首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1461篇
  免费   75篇
  国内免费   36篇
  2024年   1篇
  2023年   13篇
  2022年   12篇
  2021年   24篇
  2020年   37篇
  2019年   21篇
  2018年   23篇
  2017年   15篇
  2016年   22篇
  2015年   49篇
  2014年   88篇
  2013年   67篇
  2012年   85篇
  2011年   56篇
  2010年   62篇
  2009年   80篇
  2008年   98篇
  2007年   94篇
  2006年   100篇
  2005年   97篇
  2004年   69篇
  2003年   68篇
  2002年   63篇
  2001年   58篇
  2000年   67篇
  1999年   38篇
  1998年   50篇
  1997年   28篇
  1996年   35篇
  1995年   19篇
  1994年   11篇
  1993年   12篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有1572条查询结果,搜索用时 31 毫秒
1.
A high incidence of oncogenic K-ras mutations is observed in lung adenocarcinoma of human cases and carcinogen-induced animal models. The process of oncogenic K-ras-mediated lung adenocarcinogenesis can be dissected into two parts: pre- and post-K-ras mutation. Adoption of transgenic lines containing a flox-K-rasG12V transgene eliminates the use of chemical carcinogens and enables us to study directly crucial events post-K-ras mutation without considering the cellular events involved with oncogenic K-ras mutation, e.g., distribution and metabolism of chemical carcinogens, DNA repair, and somatic recombination by host factors. We generated two mouse strains C57BL/6J-Ryr2tm1Nobs and A/J-Ryr2tm1Nobs in which K-rasG12V can be transcribed from the cytomegalovirus early enhancer/chicken beta actin promoter in virtually any tissue. Upon K-rasG12V induction in lung epithelial cells by an adenovirus expressing the Cre recombinase, the number of tumors in the C57BL/6J-Ryr2tm1Nobs/+ mouse line was 12.5 times that in the A/J-Ryr2tm1Nobs/+ mouse line. Quantitative trait locus (QTL) analysis revealed that new three modifier loci, D3Mit19, D3Mit45 and D11Mit20, were involved in the differential susceptibility between the two lines. In addition, we found that differential expression of the wild-type K-ras gene, which was genetically turn out to be anti-oncogenic activity on K-rasG12V, could not account for the different susceptibility in our two K-rasG12V-mediated lung tumor models. Thus, we provide a genetic system that enables us to explore new downstream modifiers post-K-ras mutation.  相似文献   
2.
Studying quantitative traits is complicated due to genotype by environment interactions. One strategy to overcome these difficulties is to combine quantitative trait loci (QTL) and ecophysiological models, e.g. by identifying QTLs for the response curves of adaptive traits to influential environmental factors. A B. oleracea DH-population segregating for time to flowering was cultivated at different temperature regimes. Composite interval mapping was carried out on the three parameters of a model describing time to flowering as a function of temperature, i.e. on the intercept and slope of the response of time to floral induction to temperature and on the duration from transition to flowering. The additive effects of QTLs detected for the parameters have been used to estimate time to floral induction and flowering in the B. oleracea DH-population. The combined QTL and crop model explained 66% of the phenotypic variation for time to floral induction and 56% of the phenotypic variation for time to flowering. Estimation of time to floral induction and flowering based on environment specific QTLs explained 61 and 41% of the phenotypic variation. Results suggest that flowering time can be predicted effectively by coupling QTL and crop models and that using crop modelling tools for QTL analysis increases the power of QTL detection.  相似文献   
3.
In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant–plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.  相似文献   
4.
Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.  相似文献   
5.
以小麦品种‘小偃81’和‘西农1376’构建的含236个家系的自交重组系(RIL)群体(F2:7、F2:8代)为研究材料,采用完全随机区组设计,连续2年在陕西杨陵、河南驻马店和山东济南于灌浆期(花后20d)随机取每个株系10株测量旗叶长、宽,并利用172个SSR标记构建了遗传连锁图谱,通过基于完备区间作图法的QTL IciMapping V3.2软件,对控制小麦旗叶长、宽和面积的数量性状位点(QTL)进行了加性效应分析。结果发现:(1)9个旗叶长QTLs位于1A、4A、3B、5D和7D染色体上,单个QTL可解释5.10%~16.44%的表型变异;10个旗叶宽QTLs位于1A、3A、5A、7A、3B和5D染色体上,单个QTL可解释4.63%~14.24%的表型变异;12个旗叶面积QTLs位于1A、4A、3B、2D和5D染色体上,单个QTL可解释4.25%~22.67%的表型变异。(2)控制小麦旗叶长、宽和面积的QTLs存在差异,同一QTL在不同性状中的遗传贡献率也不同。(3)同一性状在同一年份,不同地点和在不同年份,相同地点下检测到的QTLs有的相同,但有的差异明显。(4)有些控制不同性状的QTLs在染色体的同一标记区间,表现一因多效。研究表明:位于1A和5D染色体上的2个加性QTLs都同时控制旗叶长、宽和面积,且前者为主效基因,后者遗传贡献率也较大,可用于标记辅助育种和分子聚合育种。  相似文献   
6.
QTL for stem sugar-related and other agronomic traits were identified in a converted sweet (R9188) × grain (R9403463-2-1) sorghum population. QTL analyses were conducted using phenotypic data for 11 traits measured in two field experiments and a genetic map comprising 228 SSR and AFLP markers grouped into 16 linkage groups, of which 11 could be assigned to the 10 sorghum chromosomes (SBI-01 to SBI-10). QTL were identified for all traits and were generally co-located to five locations (SBI-01, SBI-03, SBI-05, SBI-06 and SBI-10). QTL alleles from R9188 were detected for increased sucrose content and sugar content on SBI-01, SBI-05 and SBI-06. R9188 also contributed QTL alleles for increased Brix on SBI-05 and SBI-06, and increased sugar content on SBI-03. QTL alleles from R9403463-2-1 were found for increased sucrose content and sucrose yield on SBI-10, and increased glucose content on SBI-07. QTL alleles for increased height, later flowering and greater total dry matter yield were located on SBI-01 of R9403463-2-1, and SBI-06 of R9188. QTL alleles for increased grain yield from both R9403463-2-1 and R9188 were found on SBI-03. As an increase in stem sugars is an important objective in sweet sorghum breeding, the QTL identified in this study could be further investigated for use in marker-assisted selection of sweet sorghum.  相似文献   
7.
Powdery mildew (Blumeria graminis f. sp. tritici) is one of the major diseases of wheat (Triticum aestivum). Adult plant resistance (APR) to powdery mildew is considered more durable than resistance conferred by major race-specific resistance genes. The objective of the present study was a better understanding of the genetic basis of APR in RE714 by means of QTL analysis of several resistance scores along the growing season. A population of 160 recombinant inbred lines obtained from the cross between RE714 and Hardi (susceptible) was assessed for APR under natural infection conditions during 3 years and a genetic map with whole genome coverage was developed with microsatellite and AFLP markers in this population. Two major QTL on chromosomes 5D and 6A were detected each year, and 6 minor QTL were detected only in 1 or 2 years. The QTL on chromosome 5D was detected during all the growing season each year and its R 2 value varied between 8.5 and 56.3%, whereas the QTL on chromosome 6A was detected at 1–4 scoring dates in the 3 years, and its R 2 value varied between 6.1 and 20.5%. The two QTL explained between 24.4 and 52.1% of the phenotypic variance for AUDPC, depending on the year. The models including QTL and cofactors in the composite interval mapping explained between 29 and 72% of the variance. The molecular markers linked to the two major QTL could be used in marker-assisted selection for adult plant resistance to powdery mildew. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
8.
利用苹果栽培品种‘红富士’和新疆野苹果优系‘红肉苹果’杂交的110个F1株系为作图群体,构建了苹果的分子遗传图谱,采用区间作图法对苹果9个叶片相关性状(叶片长度、叶片宽度、叶片厚度、叶柄长度、叶片面积、总叶绿素含量、叶绿素a含量、叶绿素b含量和类胡萝卜素含量)进行了QTL定位分析。结果显示:从110个F1株系中共检测到20个控制叶片相关性状的QTL位点,分布在第1、2、3、4、5、7、8、10、11、12、16、17连锁群上;各QTL位点的LOD值在2.58~3.55之间,其中主效QTL位点2个(LOD≥3.5),可解释11.63%~16.36%的表型变异。获得紧密连锁的特异标记(CH05d11-435m、CH04c06-201m)为进一步进行QTL精细定位提供了参考。  相似文献   
9.
基于F—2群体的鸡重要生长性状遗传分析   总被引:14,自引:1,他引:13  
邓学梅  李俊  李宁  吴常信 《遗传学报》2001,28(9):801-807
采用F-2设计,以丝羽乌骨鸡(C系)为一亲本,分别与农大褐蛋鸡(B系),及法国明星肉鸡(A系)进行正反交,产生了包含A×C,C×A;B×C,C×B4个杂交组合的F2代群体,建立了可用于定位产肉及产蛋等性状QTL的资源群体.基于这一F-2群体,对体重及日增重等性状表型值进行分析,结果显示,亲本间均值差异显著,分离群体变异大,这组性状间有中等或较高的相关,各性状潜在的QTL座位数不超过10,所建资源家系能够满足QTL定位所需的样本数量,达到了预期的效果.  相似文献   
10.
A comprehensive and large‐scale metabolome quantitative trait loci (mQTL) analysis was performed to investigate the genetic backgrounds associated with metabolic phenotypes in rice grains. The metabolome dataset consisted of 759 metabolite signals obtained from the grains of 85 lines of rice (Oryza sativa, Sasanishiki × Habataki back‐crossed inbred lines). Metabolome analysis was performed using four mass spectrometry pipelines to enhance detection of different classes of metabolites. This mQTL analysis of a wide range of metabolites highlighted an uneven distribution of 802 mQTLs on the rice genome, as well as different modes of metabolic trait (m‐trait) control among various types of metabolites. The levels of most metabolites within rice grains were highly sensitive to environmental factors, but only weakly associated with mQTLs. Coordinated control was observed for several groups of metabolites, such as amino acids linked to the mQTL hotspot on chromosome 3. For flavonoids, m‐trait variation among the experimental lines was tightly governed by genetic factors that alter the glycosylation of flavones. Many loci affecting levels of metabolites were detected by QTL analysis, and plausible gene candidates were evaluated by in silico analysis. Several mQTLs profoundly influenced metabolite levels, providing insight into the control of rice metabolism. The genomic region and genes potentially responsible for the biosynthesis of apigenin‐6,8‐di‐C‐α‐l‐ arabinoside are presented as an example of a critical mQTL identified by the analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号