首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ion supply capacity of roots in relation to rejuvenation of primary leaves in vivo
Authors:Peter M Neumann  Zipporah Stein
Institution:Plant Physiology Lab., Faculty of Agricultural Engineering, Technion –Israel Inst. of Technology, Haifa 32000, Israel.
Abstract:Removal of the shoot above the primary node (detopping) of 3-week-old bean plants ( Phaseolus vulgaris L. cv. Contender) altered the metabolism and development of the remaining leaves. An increase in levels of chlorophyll, protein, stomatal opening, photosynthesis and growth, i.e. rejuvenation of primary leaves, was established within 7 days of detopping. These levels were maintained while the primary leaves of equivalent intact plants senesced.
The flux of xylem solution (mineral ions, cytokinins and water) into leaves is related to the leaf area to be supplied and root supply capacity; it has been suggested that detopping leads to an increased availability of root-supplied solutes and hence rejuvenation of the remaining leaves. This assumes however that root output of solutes is not decreased by the defoliation treatment.
We found that root output of ions (electrical conductivity of passive xylem exudate) in detopped plants was 30% lower than in intact plants after 24 h and 60% lower after 7 days. The output of Ca2+, Mg2+ and K+ were similarly reduced 7 and 14 days after detopping as were fresh and dry weights of roots. Furthermore, neither the calculated xylem flux of ions nor directly measured levels of Ca2+, Mg2+ and K+ were significantly increased in leaves of detopped plants during their rejuvenation. We therefore conclude that root output is tightly coupled to shoot demand and that the apparent rejuvenation of primary leaves caused by detopping bean plants is not a consequence of increased xylem flux of mineral ions into the leaves.
Keywords:Calcium  defoliation  magnesium              Phaseolus vulgaris            potassium  senescence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号