首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2365篇
  免费   212篇
  国内免费   97篇
  2024年   2篇
  2023年   83篇
  2022年   24篇
  2021年   110篇
  2020年   95篇
  2019年   99篇
  2018年   84篇
  2017年   90篇
  2016年   83篇
  2015年   94篇
  2014年   133篇
  2013年   178篇
  2012年   96篇
  2011年   108篇
  2010年   87篇
  2009年   79篇
  2008年   107篇
  2007年   88篇
  2006年   65篇
  2005年   65篇
  2004年   80篇
  2003年   90篇
  2002年   81篇
  2001年   63篇
  2000年   48篇
  1999年   43篇
  1998年   44篇
  1997年   39篇
  1996年   47篇
  1995年   34篇
  1994年   41篇
  1993年   52篇
  1992年   27篇
  1991年   26篇
  1990年   24篇
  1989年   17篇
  1988年   20篇
  1987年   18篇
  1986年   14篇
  1985年   20篇
  1984年   13篇
  1983年   7篇
  1982年   13篇
  1981年   14篇
  1980年   13篇
  1978年   4篇
  1977年   5篇
  1974年   1篇
  1973年   2篇
  1967年   2篇
排序方式: 共有2674条查询结果,搜索用时 31 毫秒
1.
《Developmental cell》2023,58(12):1007-1021
  1. Download : Download high-res image (184KB)
  2. Download : Download full-size image
  相似文献   
2.
《Developmental cell》2023,58(15):1383-1398.e6
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   
3.
4.
5.
Hydra is emerging as a model organism for studies of ageing in early metazoan animals, but reef corals offer an equally ancient evolutionary perspective as well as several advantages, not least being the hard exoskeleton which provides a rich fossil record as well as a record of growth and means of ageing of individual coral polyps. Reef corals are also widely regarded as potentially immortal at the level of the asexual lineage and are assumed not to undergo an intrinsic ageing process. However, putative molecular indicators of ageing have recently been detected in reef corals. While many of the large massive coral species attain considerable ages (>600 years) there are other much shorter‐lived species where older members of some populations show catastrophic mortality, compared to juveniles, under environmental stress. Other studies suggestive of ageing include those demonstrating decreased reproduction, increased susceptibility to oxidative stress and disease, reduced regeneration potential and declining growth rate in mature colonies. This review aims to promote interest and research in reef coral ageing, both as a useful model for the early evolution of ageing and as a factor in studies of ecological impacts on reef systems in light of the enhanced effects of environmental stress on ageing in other organisms.  相似文献   
6.
Although recent evidence has shown that hepatocyte senescence plays a crucial role in the pathogenesis and development of non-alcoholic fatty liver disease (NAFLD), the mechanism is still not clear. The purpose of this study was to investigate the signal transduction pathways involved in the senescence of hepatocyte, in order to provide a potential strategy for blocking the process of NAFLD. The results confirmed that hepatocyte senescence occurred in HFD-fed Golden hamsters and PA-treated LO2 cells as manifested by increased levels of senescence marker SA-β-gal, p16 and p21, heterochromatin marker H3K9me3, DNA damage marker γ-H2AX and decreased activity of telomerase. Further studies demonstrated that iron overload could promote the senescence of hepatocyte, whereas the overexpression of Yes-associated protein (YAP) could blunt iron overload and alleviate the senescence of hepatocyte. Of importance, depression of lncRNA MAYA (MAYA) reduced iron overload and cellular senescence via promotion of YAP in PA-treated hepatocytes. These effects were further supported by in vivo experiments. In conclusion, these data suggested that inhibition of MAYA could up-regulate YAP, which might repress hepatocyte senescence through modulating iron overload. In addition, these findings provided a promising option for heading off the development of NAFLD by abrogating hepatocyte senescence.  相似文献   
7.
8.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
9.
10.
Superoxide dismutases (SOD; EC 1.15.1.1) in chestnut ( Castanea sativa Mill., cv. 431) leaves were characterized by native polyacrylamide gel electrophoresis. The three molecular forms of SOD were distinguished from each other by their different sensitivity to cyanide and H2O2 Three CuZn-containing SODs were detected (CuZn-SOD I, II. and III), and all the isozymes had a molecular mass of 33 kDa. CuZn-SOD III was the most abundant isozyme. whereas CuZn-SOD II was present in a minor amount. In leaves showing typical symptoms of senescence increases of 2.5-. 7- and 4-fold in the specific activities of CuZn-SODs I, II, and III. respectively, were found. In addition, the pattern of the three isozymes was modified by the age of leaves, a rise in the CuZn-SOD II and a decrease in the CuZn-SOD 1 percentages being found in senescent leaves compared to green leaves. As to other activated oxygen-related enzymes, an increase in the superoxide-generating xanthine oxidase activity and a decline in both catalase and peroxidase activities during natural senescence of chestnut leaves were observed. Results obtained suggest that in natural senescence of chestnut leaves activated oxygen species are involved, and an overproduction of hydrogen peroxide and superoxide radicals probably takes place.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号