首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana
Authors:Kliebenstein Daniel J  D'Auria John C  Behere Aditi S  Kim Jae Hak  Gunderson Kevin L  Breen John N  Lee Grace  Gershenzon Jonathan  Last Robert L  Jander Georg
Institution:Department of Plant Sciences, University of California--Davis, One Shields Ave, Davis, CA 95616, USA.
Abstract:Glucosinolates are secondary metabolites involved in pathogen and insect defense of cruciferous plants. Although seeds and vegetative tissue often have very different glucosinolate profiles, few genetic factors that determine seed glucosinolate accumulation have been identified. An HPLC-based screen of 5500 mutagenized Arabidopsis thaliana lines produced 33 glucosinolate mutants, of which 21 have seed-specific changes. Five of these mutant lines, representing three genetic loci, are compromised in the biosynthesis of benzoyloxyglucosinolates, which are only found in seeds and young seedlings of A. thaliana. Genetic mapping and analysis of T-DNA insertions in candidate genes identified BZO1 (At1g65880), which encodes an enzyme with benzoyl-CoA ligase activity, as being required for the accumulation of benzoyloxyglucosinolates. Long-chain aliphatic glucosinolates are elevated in bzo1 mutants, suggesting substrate competition for the common short-chain aliphatic glucosinolate precursors. Whereas bzo1 mutations have seed-specific effects on benzoyloxyglucosinolate accumulation, the relative abundance of 3-benzoyloxypropyl- and 4-benzoyloxybutylglucosinolates depends on the maternal genotype.
Keywords:benzoyloxyglucosinolate  benzoyl-CoA ligase  glucosinolate  seed  Arabidopsis  mutant
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号