首页 | 本学科首页   官方微博 | 高级检索  
   检索      


GENETIC VARIATION AND COVARIATION FOR CHARACTERISTICS ASSOCIATED WITH CADMIUM TOLERANCE IN NATURAL POPULATIONS OF THE SPRINGTAIL ORCHESELLA CINCTA (L.)
Authors:Leo Posthuma  Ren F Hogervorst  Els N G Joosse  Nico M Van Straalen
Institution:Leo Posthuma,René F. Hogervorst,Els N. G. Joosse,Nico M. Van Straalen
Abstract:Heavy metals can be strong and stable directional selective agents for metal-exposed populations. Genetic variation for the metal-tolerance characteristic “cadmium excretion efficiency” was studied in populations of the collembolan Orchesella cincta from a reference- and a metal-contaminated forest soil. Previously it has been shown that “excretion efficiency” influences tolerance through midgut-mediated immobilization and excretion of toxic metal ions, and that an increased mean excretion efficiency is present in animals inhabiting metal-contaminated litter. In the present research, offspring-parent regressions showed that additive genetic variation for cadmium excretion efficiency was present in the population from the reference site. The heritability estimate was 0.33. In the natural population exposed to heavy metals from an industrial source, additive genetic variation was not significantly different from zero. Differences in the heritability between the reference and the exposed population were not significant. Genetic variation for cadmium excretion efficiency allows for a response to selection in the reference population. Such a response has probably occurred in the metal-exposed population. Half-sib analysis with animals from the reference population was used to estimate genetic variation and maternal effects for excretion efficiency, relative growth rate and molting frequency, and to determine genetic correlations between these characteristics. Additive genetic variation was demonstrated for all three characteristics, heritability estimates were 0.48, 0.75 and 0.46, respectively. Maternal effects were low for excretion efficiency and molting frequency, but may be present for relative growth rate. Phenotypic and genetic correlations among these characteristics were positive. The environmental correlation between relative growth rate and molting frequency was positive, others were negative. Direct selection for any of the characteristics, or genetic correlations between tolerance characteristics and growth characteristics, or both may have caused the responses previously observed in field populations.
Keywords:Adaptation  body growth  Collembola  genetic correlation  genetic variation  heavy metal  Orchesella cincta  tolerance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号