首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reconstitution of a pentameric complex of dimeric transforming growth factor beta ligand and a type I,II, III receptor in baculoviral-infected insect cells
Authors:Koichi Matsuzaki  Mikio Kan  Wallace L McKeehan
Institution:(1) Albert B. Alkek Institute of Biosciences and Technology, Department of Biochemistry and Biophysics, Texas A&M University, 2121 West Holcombe Boulevard, 77030-3303 Houston, Texas;(2) Present address: Third Department of Internal Medicine, Kansai Medical University, 10-15 Fumizonocho, Moriguchi, 570 Osaka, Japan
Abstract:Summary Two transmembrane serine-threonine kinases (type I and II receptors), a membrane-anchored proteoglycan (type III), and a homodimeric ligand participate in the transforming growth factor beta type on (TGFβ1) signal transduction complex. The expression of recombinant receptors in insect cells co-infected with up to three recombinant baculoviruses was employed to study interactions among the ectodomains of the three types of receptors and the TGFβ1 ligand in absence of uncontrollable extrinsic factors in mammalian cells. Multi-subunit complexes were assembled in intact cells and purified on glutathione-conjugated beads for analysis by tagging one of the subunits with glutathione S-transferase (GST). Intrinsic ligand-independent interactions were observed among receptor subunits as follows: type III–III type I–I, type III-I, and type II-I. The homeotypic complex of type II–II receptors and the heterotypic type III-II interaction was ligand dependent. The type I, but not the type III, subunit displaced about 50% of the type II component in either ligand-dependent homomeric type II-type II complexes or heteromeric type III-type II complexes to form type II-I or type III-II-I oligomers, respectively. The type II subunit displaced type I subunits in oligomers of the type I subunit. Specificity of type I receptors may result from differential affinity for the type II receptor rather than specificity for ligand. A monomeric subunit of the TGFβ1 ligand bound concurrently to type III and type II or type III and type I receptors, but failed to concurrently bind to the type II and type I subunits. The binding of TGFβ1 to the type I kinase subunit appears to require an intact disulfide-linked ligand dimer in the absence of a type III subunit. The combined results suggest a pentameric TGFβ signal transduction complex in which one unit each of the type III, type II, and type I components is assembled around the two subunits of the dimeric TGFβ1 ligand. An immobilized GST-tagged subunit of the receptor complex was utilized to assemble multi-subunit complexesin vitro and to study the phosphorylation events among subunits in the absence of extrinsic cell-derived kinases. The results revealed that (a) a low level of ligand-independent autophosphorylation occurs in the type I kinase; (b) a high level of autophosphorylation occurs in the type II kinase; (c) both the type III and type I subunits aretrans-phosphorylated by the type II subunit; and (d) the presence of both type I and II kinases complexed with the type III subunit and dimeric TGFβ1 ligand in a pentameric complex causes maximum phosphorylation of all three receptor subunits.
Keywords:cancer  signal transduction  growth factors  cytokines
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号