首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1182篇
  免费   132篇
  国内免费   33篇
  2024年   4篇
  2023年   29篇
  2022年   23篇
  2021年   53篇
  2020年   78篇
  2019年   86篇
  2018年   49篇
  2017年   35篇
  2016年   51篇
  2015年   48篇
  2014年   64篇
  2013年   98篇
  2012年   40篇
  2011年   46篇
  2010年   46篇
  2009年   52篇
  2008年   48篇
  2007年   68篇
  2006年   52篇
  2005年   47篇
  2004年   35篇
  2003年   38篇
  2002年   44篇
  2001年   44篇
  2000年   17篇
  1999年   22篇
  1998年   23篇
  1997年   14篇
  1996年   22篇
  1995年   8篇
  1994年   21篇
  1993年   17篇
  1992年   8篇
  1991年   9篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
排序方式: 共有1347条查询结果,搜索用时 78 毫秒
1.
《Cytokine》2015,73(2):224-225
Balanced regulation of cytokine secretion in T cells is critical for maintenance of immune homeostasis and prevention of autoimmunity. The Rho-associated kinase (ROCK) 2 signaling pathway was previously shown to be involved in controlling of cellular movement and shape. However, recent work from our group and others has demonstrated a new and important role of ROCK2 in regulating cytokine secretion in T cells. We found that ROCK2 promotes pro-inflammatory cytokines such as IL-17 and IL-21, whereas IL-2 and IL-10 secretion are negatively regulated by ROCK2 under Th17-skewing activation. Also, in disease, but not in steady state conditions, ROCK2 contributes to regulation of IFN-γ secretion in T cells from rheumatoid arthritis patients. Thus, ROCK2 signaling is a key pathway in modulation of T-cell mediated immune responses underscoring the therapeutic potential of targeted inhibition of ROCK2 in autoimmunity.  相似文献   
2.
Inflammatory responses mediated by activated microglia play a pivotal role in the pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders. Studies on identification of specific targets to control microglia activation and resultant neurotoxic activity are imperative. Increasing evidence indicate that voltage-gated K+ (Kv) channels are involved in the regulation of microglia functionality. In this study, we investigated Kv1.3 channels in the regulation of neurotoxic activity mediated by HIV-1 glycoprotein 120 (gp120)-stimulated rat microglia. Our results showed treatment of microglia with gp120 increased the expression levels of Kv1.3 mRNA and protein. In parallel, whole-cell patch-clamp studies revealed that gp120 enhanced microglia Kv1.3 current, which was blocked by margatoxin, a Kv1.3 blocker. The association of gp120 enhancement of Kv1.3 current with microglia neurotoxicity was demonstrated by experimental results that blocking microglia Kv1.3 attenuated gp120-associated microglia production of neurotoxins and neurotoxicity. Knockdown of Kv1.3 gene by transfection of microglia with Kv1.3-siRNA abrogated gp120-associated microglia neurotoxic activity. Further investigation unraveled an involvement of p38 MAPK in gp120 enhancement of microglia Kv1.3 expression and resultant neurotoxic activity. These results suggest not only a role Kv1.3 may have in gp120-associated microglia neurotoxic activity, but also a potential target for the development of therapeutic strategies.  相似文献   
3.
We sought to explore the functions and modulated factors of NOD1 in normal decidual stromal cells (DSCs) derived from the first trimester pregnancy and whether existed different expression of NOD1 between normal and unexplained recurrent pregnancy loss (URPL) in DSCs. Twenty‐six patients with normal pregnancies that required abortion and 12 URPL patients at first trimester were enrolled for the study. As a result, we found lower levels of NOD1 in the DSCs derived from URPL compared with those from normal early trimester pregnancy. Furthermore, increased NOD1 expression in the normal DSCs induced apoptosis and increased monocyte chemotactic protein‐1 (MCP‐1) and IL‐1β (interleukin 1 beta) secretion but decreased their invasion capacity. In addition, several cytokines such as IL‐1β, tumour necrosis factor‐alpha (TNF‐α), interferon‐gamma (IFN‐γ), and interleukin‐17 (IL‐17) were present at the maternal‐fetal interface in RPL and were found to regulate NOD1 expression in primary DSCs. Our study indicates that RPL may be associated with NOD1 aberrant expression in DSCs, which plays a significant role in maintaining pregnancy via infection control and regulation of immune responses that might affect the pregnancy outcome. We expect that our results will bring more comprehensively understanding about the connection between NOD1 and RPL for researchers.  相似文献   
4.
5.
The effects of Staphylococcus aureus enterotoxin A (SEA) and lipopolysaccharide (LPS) in cytokine production were assessed at the single cell level in cells obtained from healthy blood donors. Cytokine production was studied with UV-microscopy of fixed and permeabilized cells stained with cytokine specific monoclonal antibodies. The cytokines evaluated included tumour necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-10, IL-2, IL-4, interferon (IFN)-γ and TNF-β. LPS exhibited marked production of IL-1α, IL-1β, TNF-α, IL-6 and IL-8. After LPS stimulation IL-1α, IL-1β, TNF-α and IL-8 were the dominating products, all peaking at or before 4 hours after cell stimulation. In addition, IL-10 production was evident after 12 hours of cell stimulation. The T-lymphocyte-derived cytokines TNF-β, IL-2, IFN-γ and IL-4 were never detected in the cultures. All cytokine production, except IL-8, was downregulated at 96 hours.In contrast, peak production of IL-1α, IL-1β and IL-8, which were the dominant products, occurred after 12 hours in the SEA-stimulated cultures. Further, a significant T-lymphocyte production of TNF-β, TNF-α, IFN-γ and IL-2 was found with peak production 12–48 hours after initiation. Only low amounts of IL-6 were evident.The two types of cytokine pattern and kinetics found may correspond to the different clinical conditions after invasive Gram-negative Escherichia coli vs Gram-positive Staphylococcus aureus infections in humans, with a much more rapid onset of disease after E. coli infections. The data may also imply that different immunomodulating approaches should be considered in life-threatening diseases with the two microbacterial agents.  相似文献   
6.
Chemical examination of a coral‐associated fungus Aspergillus versicolor LZD‐44‐03 resulted in the isolation of two new compounds with the trivial names of varicuothiols A ( 1 ) and B ( 2 ) as a unique scaffold. Their structures were determined through extensive spectroscopic analyses in association with the modified Mosher's method and chemical conversion. Both 1 and 2 exhibited significant inhibition against LPS‐induced RAW24.7 cell proliferation, in association with the down regulation of nitrite production and cytokines (MCP‐1, IL‐6, and TNF‐α).  相似文献   
7.
An in vitro human reconstructed epidermis model (SkinEthic) used for screening acute and chronic skin irritation potential was validated against in vivo data from skin tolerability studies. The irritation potential of sodium lauryl sulfate (SLS), calcipotriol and trans-retinoic acid was investigated. The in vitro epidermis-like model consists of cultures of keratinocytes from human foreskin on a polycarbonate filter. The modulation of cell viability, the release and gene expression of proinflammatory cytokines, interleukins 1α and 8, and morphological changes were evaluated during 3 days as endpoints representative for an inflammatory reaction. The cumulative irritation potential of the topical products was evaluated in a human clinical study by visual scoring and biophysical measurement of inflammatory skin reaction after repeated 24 h applications over 3 weeks under Finn chamber patches. All topical products that were nonirritating in the human study were noncytotoxic and did not induce cytokine expression in the in vitro acute model (day 1 exposure). All irritating controls exhibited specific cell viability and cytokine patterns, which were predictive of the in vivo human data. The ranking of mild to moderate skin irritation potential was based on the lack of cytotoxicity and the presence of cytokine patterns including gene expression specific for each irritant, using the chronic in vitro model (up to 3 days exposure). The human reconstructed epidermis model SkinEthic was shown to be a reliable preclinical tool predicting the irritation potential of topical products. Moreover, it is a useful model in a two-step tiered strategy for screening acute and chronic irritation potential for the selection of vehicles for new topical drugs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
Mast cells are widely distributed in the body and affect their surrounding environment through degranulation and secretion of cytokines. Conversely, mast cells are influenced by environmental stimuli such as cyclical mechanical stretch (CMS), such as that induced by heartbeat and respiration. Peripherally distributed mast cells are surrounded by extracellular matrix, where they bind IgE on their surface by expressing the high‐affinity Fc receptor for IgE (FcεRI), and they release mediators after cross‐linking of surface‐bound IgE by allergen. To analyse how CMS affects mast cell responses, we examined the effect of applying CMS on the behaviour of IgE‐bound mast cells (RBL‐2H3 cell line) adhering to fibronectin as a substitute for extracellular matrix. We found that CMS enhanced FcεRI‐mediated secretion in the presence of antigen (2,4‐dinitrophenol–bovine serum albumin). CMS increased expression of IL‐4 mRNA and secretion of IL‐4 protein. Western blot analysis showed that CMS changes the signal transduction in mitogen‐activated protein kinases and AKT, which in turn alters the regulation of IL‐4 and increases the secretion of IL‐4. These results suggest that CMS modulates the effect of mast cells on inflammation and resultant tissue remodelling. Understanding how CMS affects mast cell responses is crucial for developing therapies to treat mast cell‐related diseases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
9.
Cytokines represent one of the most important elements in the communication among different cell types. They play an increasingly better understood role in the communication among hematopoietic cells and in particular in the reciprocal regulation of effector cell types of innate or natural resistance (phagocytic cells and Natural Killer (NK) cells) and those of adaptive immunity (T and B lymphocytes). Lymphocytes produce several cytokines with either stimulatory (e.g., colony stimulatory factor) or suppressive (e.g., tumor necrosis factors and interferons) effects on proliferation of early hematopoietic cells. Many of these cytokines, alone or acting in synergistic combinations, also have a differentiation-inducing ability on immature myeloid cells and act as powerful potentiators of the cellular functions of terminally differentiated phagocytic cells. The communication between lymphocytes and phagocytic cells is not unidirectional, as phagocytic cells produce factors that regulate lymphocyte activation. In addition to their role as antigen presenting cells expressing costimulatory accessory molecules and secreting cytokines (e.g., IL-1, IL-6, TNF), phagocytic cells have been recently shown to produce Natural Killer cell Stimulatory Factor (NKSF/IL-12). IL-12 is a heterodimeric cytokine with important modulatory functions on cytotoxicity of NK and T cells, lymphocyte proliferation, lymphokine production, and development of T helper cell subsets. These communications between phagocytic cells and lymphocytes are further regulated by negative and positive feedback mechanisms that contribute to maintain the homeostasis of the system in physiologic conditions and to govern the changes in this equilibrium needed for the response to infectious or other foreign agents.  相似文献   
10.
Aging‐associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world''s population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging‐associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin‐37 (IL‐37) is a potent anti‐inflammatory cytokine, and we present data demonstrating that IL‐37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin‐37 (IL‐37) in aged mice reduces or prevents aging‐associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL‐37 expression decreases the surface expression of programmed cell death protein 1 (PD‐1) and augments cytokine production from aged T‐cells. Improved T‐cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T‐cells and Lat in CD8+ T‐cells when aged mice were treated with recombinant IL‐37 (rIL‐37) but not control immunoglobin (Control Ig). Importantly, IL‐37‐mediated rejuvenation of aged endogenous T‐cells was also observed in aged chimeric antigen receptor (CAR) T‐cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL‐37 in boosting the function of aged T‐cells and highlight its therapeutic potential to overcome aging‐associated immunosenescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号