首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth,loss, and vertical distribution of Pinus radiata fine roots growing at ambient and elevated CO2 concentration
Authors:Stephen M Thomas  David Whitehead  JefF B Reid  Freeman J Cook  JohN A Adams  AlaN C Leckie
Abstract:Increased below-ground carbon allocation in forest ecosystems is a likely consequence of rising atmospheric CO2 concentration. If this results in changes to fine root growth, turnover and distribution long-term soil carbon cycling and storage could be altered. Bi-weekly measurements were made to determine the dynamics and distribution of fine roots (< 1 mm diameter) for Pinus radiata trees growing at ambient (350 μmol mol–1) and elevated (650 μmol mol–1) CO2 concentration in large open-top chambers. Measurements were made using minirhizotrons installed horizontally at depths of 0.1, 0.3, 0.5 and 0.9 m. During the first year, at a depth of 0.3 m, the increase in relative growth rate of roots occurred 6 weeks earlier in the elevated CO2 treatment and the maximum rate was reached 10 weeks earlier than for trees in the ambient treatment. After 2 years, cumulative fine root growth (Pt) was 36% greater for trees growing at elevated CO2 than at ambient CO2 concentration, although this difference was not significant. A model of root growth driven by daily soil temperature accounted for between 43 and 99% of root growth variability. Total root loss (Lt) was 9% in the ambient and 14% in the elevated CO2 treatment, although this difference was not significant. Root loss was greatest at 0.3 m. In the first year, 62% of fine roots grown between mid-summer and late-autumn disappeared within a year in the elevated CO2 treatment, but only 18% in the ambient CO2 treatment (P < 0.01). An exponential model relating Lt to time accounted for between 74 and 99% of the variability. Root cohort half-lives were 951 d for the ambient and 333 d for the elevated treatment. Root length density decreased exponentially with depth in both treatments, but relatively more fine roots grown in the elevated CO2 treatment tended to occur deeper in the soil profile.
Keywords:elevated CO2 concentration                 fine root growth  fine root loss  minirhizotron  Pinus radiata  root distribution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号