首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   11篇
  国内免费   22篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   8篇
  2007年   6篇
  2006年   1篇
  2005年   8篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
In order to help design experiments with minirhizotrons or interpret data from such experiments, a modelling approach is a valuable tool to complement empirical approaches. The general principle of this modelling approach is to calculate and to study the part of a theoretical root system that is intersected by passes through a virtual minirhizotron tube (modelled here as a cylinder). Various outputs can be calculated from this part of the root system, and related to the surrounding root system which is perfectly known, since it has been simulated and stored in a data structure. Therefore, the method involves two levels of modelling that are presented and discussed: the root system architecture of a crop, and the observations that can be achieved with minirhizotron tubes. Illustrations of the method are presented to study the effect of several factors on the rooting depth curves, and to show how images may be calculated to mimic what can actually be viewed from inside the tube. These first results show that the maximum rooting depth curves, as virtually observed in the minirhizotron tube, present large variations and strongly underestimate the maximum rooting depth of the modelled root system (up to 60 cm in average). The underestimation is still more critical when the radius of the tube is lower than 3 cm, and when the tube is close to the vertical (angle lower than 0.2 rad). The use of the 0.9 quantile instead of the average value, for each of the observation dates, leads to a better estimation of the maximum rooting depth.  相似文献   
2.
3.
4.
5.
《植物生态学报》2017,41(10):1041
Aims Fine roots are the principal parts for plant nutrients acquisition and play an important role in the underground ecosystem. Increased nitrogen (N) deposition has changed the soil environment and thus has a potential influence on fine roots. The purpose of this study is to reveal the effect of N deposition on biomass, lifespan and morphology of fine root.Methods A field N addition experiment was conducted in a secondary broad-leaved forest in subtropical China from May 2013 to September 2015. Three levels of N treatments: CK (no N added), LN (5 g·m-2·a-1), and HN (15 g·m-2·a-1) were applied monthly. Responses of fine root biomass, lifespan, and morphology of Castanopsis platyacantha to N addition were analyzed by using a minirhizotron image system from April 2014 to September 2015. Surface soil sample (0-10 cm) was collected in November 2014 and soil pH value, and concentrations of NH4+-N and NO3--N were measured.Important findings The biomass and average lifespan of the fine roots of C. platyacantha were 128.30 g·m-3 and 113-186 days, respectively, in 0-45 cm soil layer. Nitrogen addition had no significant effect on either fine root biomass or lifespan in 0-45 cm soil layer. However, LN treatment significantly decreased C. platyacantha root superficial area in 0-15 cm soil layer. HN treatment significantly decreased soil pH value. Our study indicated that short-term N addition influences soil inorganic N concentration and thus decreased pH value in surface soil, and thereafter affect fine root morphology. Short-term N addition, however, did not affect the fine root biomass, lifespan and morphology in subsoil.  相似文献   
6.
叶片被取食会导致树木生长发育和生理代谢发生显著的变化。目前对细根动态如何对叶片损失做出响应的了解仍然有限。以生物量分配和高生长策略不同的水曲柳(Fraxinus mandschurica)和落叶松(Larix gmelinii)苗木为研究对象, 进行了不同强度的人为去叶处理(叶面积去除0% (对照)、40%和80%), 采用微根管技术对细根(直径≤2 mm)生产和死亡的季节动态进行了定量观测, 同期测定了地上部分(苗高和地径)的生长。结果表明: 1)去叶降低了两树种苗高(统计上均不显著)和地径的生长, 但是对苗高生长的影响小于地径。随着去叶强度的提高, 苗木地上生长受到的影响加大, 生长季末期水曲柳苗高比对照降低3.3%-12.1%, 地径降低5.7%-23.1%; 而落叶松苗高和地径降低相对较少(< 12%)。2)去叶显著地减少了水曲柳和落叶松细根现存量(p< 0.001), 其相对增长量((去叶后现存量高峰-去叶当日现存量)/去叶当日现存量)随着去叶强度的加大而降低。3)与对照相比, 去叶后两树种细根生产量显著减少(p< 0.05), 而细根死亡量在不同处理间没有显著差异。综合来看, 去叶对水曲柳地上部分(特别是地径)生长影响较大, 而对落叶松地下部分(主要是新根)生长影响较大。研究结果为理解冠层碳供应对根系动态影响的种间差异及其机制提供了必要的理论依据。  相似文献   
7.
Large‐scale, long‐term FACE (Free‐Air CO2 enrichment) experiments indicate that increases in atmospheric CO2 concentrations will influence forest C cycling in unpredictable ways. It has been recently suggested that responses of mycorrhizal fungi could determine whether forest net primary productivity (NPP) is increased by elevated CO2 over long time periods and if forests soils will function as sources or sinks of C in the future. We studied the dynamic responses of ectomycorrhizae to N fertilization and atmospheric CO2 enrichment at the Duke FACE experiment using minirhizotrons over a 6 year period (2005–2010). Stimulation of mycorrhizal production by elevated CO2 was observed during only 1 (2007) of 6 years. This increased the standing crop of mycorrhizal tips during 2007 and 2008; during 2008, significantly higher mortality returned standing crop to ambient levels for the remainder of the experiment. It is therefore unlikely that increased production of mycorrhizal tips can explain the lack of progressive nitrogen limitations and associated increases in N uptake observed in CO2‐enriched plots at this site. Fertilization generally decreased tree reliance on mycorrhizae as tip production declined with the addition of nitrogen as has been shown in many other studies. Annual NPP of mycorrhizal tips was greatest during years with warm January temperatures and during years with cool spring temperatures. A 2 °C increase in average late spring temperatures (May and June) decreased annual production of mycorrhizal root tip length by 50%. This has important implications for ecosystem function in a warmer world in addition to potential for forest soils to sequester atmospheric C.  相似文献   
8.
高寒草甸植被细根生产和周转的比较研究   总被引:1,自引:0,他引:1  
植物根系是陆地生态系统重要的碳汇和养分库,细根周转过程是陆地生态系统地下部分碳氮循环的核心环节,在陆地生态系统如何响应全球变化中起着关键作用。在全球变化敏感地区之一的青藏高原,对该地区的主要植被类型矮嵩草草甸同时采用根钻法、内生长袋法和微根管法3种观测方法研究细根生产和周转速率,并探讨了极差法、积分法、矩阵法和Kaplan-Meier法等数据处理方法对计算值的影响。研究结果显示:在估算细根净初级生产力时,根钻法宜采用积分法,内生长袋法宜选用矩阵法;由此进一步以最大细根生物量为基础,根钻法和内生长袋法估测的细根年周转速率分别为0.36 a-1和0.52 a-1,内生长袋法的估算结果是根钻法的1.44倍。对于微根管法,将其观测得到的细根长度转换为单位面积的生物量值后,采用积分法计算出细根周转速率为0.84 a-1,远高于传统方法的估算结果;若采用Kaplan-Meier生存分析方法,则计算出的细根周转速率更高达3.41 a-1。  相似文献   
9.
López  B.  Sabaté  S.  Gracia  C.A. 《Plant and Soil》2001,230(1):125-134
The biomass, production and mortality of fine roots (roots with diameter <2.5 mm) were studied in a typical Mediterranean holm oak (Quercus ilex L.) forest in NE Spain using the minirhizotron methodology. A total of 1212 roots were monitored between June of 1994 and March of 1997. Mean annual fine root biomass in the holm oak forest of Prades was 71±8 g m–2 yr–1. Mean annual production for the period analysed was 260+11 g m–2 yr–1. Mortality was similar to production, with a mean value of 253±3 g m–2 yr–1. Seasonal fine root biomass presented a cyclic behaviour, with higher values in autumn and winter and lower in spring and summer. Production was highest in winter, and mortality in spring. In summer, production and mortality values were the lowest for the year. Production values in autumn and spring were very similar. The vertical distribution of fine root biomass decreased with increasing depth except for the top 10–20 cm, where values were lower than immediately below. Production and mortality values were similar between 10 and 50 cm depth. In the 0–10 cm and the 50–60 cm depth intervals, both production and mortality were lower.  相似文献   
10.
The minirhizotron technique (MR) for in situ measurement of fine root dynamics offers the opportunity to obtain accurate and unbiased estimates of root production in perennial vegetation only if MR tubes do not affect the longevity of fine roots. Assuming fine root biomass is near steady-state, fine root production (g m–2 yr–1) can be estimated as the ratio of fine root biomass (g m–2) to median fine root longevity (yr). This study evaluates the critical question of whether MR access tubes affect the longevity of fine roots, by comparing fine root survivorship obtained using MR with those from a non-intrusive in situ screen method in the forest floor horizons of a northern hardwood forest in New Hampshire, USA. Fine root survivorship was measured in 380 root screens during 1993–1997 and in six horizontal minirhizotron tubes during 1996–1997. No statistically significant difference was found between estimates of survivorship of fine roots (<1 mm dia.) at this site from MR versus from in situ screens, suggesting that MR tubes do not substantially affect fine root longevity in the forest floor of this northern hardwood forest and providing greater confidence in measurements of fine root production using the MR technique. Furthermore, the methodology for estimating fine root production from MR longevity data was evaluated by comparison of fine root longevity and production estimates made using single vs. multiple root cohorts, and using root-number, root-length, and root-mass weighted methods. Our results indicate that fine root-length longevity estimates based on multiple root cohorts throughout the year can be used to approximate fine root biomass production. Using this method, we estimated fine root longevity and production in the forest floor at this site to be 314 days (or 0.86 yr) and 303 g m–2 yr–1, respectively. Fine root production in this northern hardwood forest is approximately equivalent to standing biomass and was previously underestimated by root in-growth cores. We conclude that the use of MR to estimate fine root longevity and production as outlined here may result in improved estimates of fine root production in perennial vegetation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号