首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of NO3- supply on N metabolism of potato plants (Solanum tuberosum L.) with special focus on the tubers
Authors:G Mäck  & J K Schjoerring
Institution:Plant Nutrition Laboratory, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
Abstract:The response of the tubers to NO3 was studied in comparison to the other organs of Solanum tuberosum var. Sava, with special focus on: (a) whether tubers are capable of primary N assimilation; (b) whether N assimilation is stimulated by NO3; and (c) whether primary N assimilation in tubers is important for tuber growth. NO3 reduction via nitrate reductase (NR; EC 1.6.6.1) and NH4+ assimilation via glutamine synthetase (GS; EC 6.3.1.2) occurred predominantly in the shoots, but up to 20% was contributed by the tubers under low‐NO3 conditions. NR activation was highest in tubers (up to 90%) and declined in all organs with increasing NO3 supply. NR and GS activity responded with a decline in tubers and roots as opposed to an increase in the shoots. This corresponded to relative organ growth: growth of tubers and roots was stimulated relative to that of shoots at a limiting NO3 supply. Absolute growth of all organs was stimulated by NO3, whereas tuber number declined. The concentration of N compounds increased with NO3 supply in all organs: NO3 increased most dramatically in the shoots (81‐fold), free amino acids most markedly in the tubers (three‐fold). The amount of patatin and of the 22 kDa protein complex in the tuber reached a minimum when the amount of Rubisco in the shoot reached maximum as a response to NO3 supply. Tuber sucrose and starch increased by 40%, whereas glucose and fructose declined two‐fold as plant N status increased. It is concluded that tubers are potentially N autotroph organs with capacity for de novo synthesis of amino acids. Primary N assimilation in tubers, however, declines with increasing NO3 supply and is not of major importance for tuber growth.
Keywords:amino acids  ammonium  22-kDa protein complex  glutamine synthetase (GS)  nitrate reductase (NR)  patatin  Rubisco  starch  storage protein  sugar
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号