首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pectoral fin morphology of batoid fishes (Chondrichthyes: Batoidea): Explaining phylogenetic variation with geometric morphometrics
Authors:Oliver Franklin  Colin Palmer  Gareth Dyke
Institution:1. Department of Integrative Biology, University of Guelph, Canada;2. Department of Earth Science, University of Bristol, UK;3. Department of Ocean and Earth Science, University of Southampton, UK
Abstract:The diverse cartilaginous fish lineage, Batoidea (rays, skates, and allies), sister taxon to sharks, comprises a huge range of morphological diversity which to date remains unquantified and unexplained in terms of evolution or locomotor style. A recent molecular phylogeny has enabled us to confidently assess broadscale aspects of morphology across Batoidea. Geometric morphometrics quantifies the major aspects of shape variation, focusing on the enlarged pectoral fins which characterize batoids, to explore relationships between ancestry, locomotion and habitat. A database of 253 specimens, encompassing 60 of the 72 batoid genera, reveals that the majority of morphological variation across Batoidea is attributable to fin aspect‐ratio and the chordwise location of fin apexes. Both aspect‐ratio and apex location exhibit significant phylogenetic signal. Standardized independent linear contrast analysis reveals that fin aspect‐ratio can predict locomotor style. This study provides the first evidence that low aspect‐ratio fins are correlated with undulatory‐style locomotion in batoids, whereas high aspect‐ratio fins are correlated with oscillatory locomotion. We also show that it is phylogeny that determines locomotor style. In addition, body‐ and caudal fin‐locomotors are shown to exhibit low aspect‐ratio fins, whereas a pelagic lifestyle correlates with high aspect‐ratio fins. These results emphasize the importance of phylogeny in determining batoid pectoral fin shape, however, interactions with other constraints, most notably locomotor style, are also highlighted as significant. J. Morphol. 275:1173–1186, 2014. © 2014 Wiley Periodicals, Inc.
Keywords:divergence  swimming  oscillatory  undulatory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号