首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   45篇
  国内免费   34篇
  2024年   3篇
  2023年   6篇
  2022年   6篇
  2021年   15篇
  2020年   26篇
  2019年   22篇
  2018年   14篇
  2017年   18篇
  2016年   23篇
  2015年   27篇
  2014年   25篇
  2013年   40篇
  2012年   11篇
  2011年   30篇
  2010年   17篇
  2009年   32篇
  2008年   28篇
  2007年   25篇
  2006年   26篇
  2005年   25篇
  2004年   23篇
  2003年   23篇
  2002年   22篇
  2001年   19篇
  2000年   12篇
  1999年   7篇
  1998年   6篇
  1997年   11篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   7篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有606条查询结果,搜索用时 15 毫秒
1.
Fast axon activity and the motor pattern in cockroach legs during swimming   总被引:1,自引:0,他引:1  
Abstract Electromyographic recordings were made from muscles that extend the trochanter/femur of each of the six legs of American cockroaches, Periplaneta americana (L.), while the insects swam in water. The recordings showed two novel features. (1) During swimming, muscle activity in different legs was coordinated in the alternating tripod pattern commonly seen during free walking on land, not in the pattern of synchronous leg pairs common to other large terrestrial insects in water. (2) Fast axons were usually recruited along with slow axons, even when the insect swam at a moderate pace. Fast axon activity always started after the middle of the slow axon burst in intact insects, but vanished from most bursts in the stump of the leg after amputation of the femur. The alternating tripod pattern was maintained even after amputation. Possible causes of fast axon recruitment are discussed.  相似文献   
2.
Hicks  Geoffrey R. F. 《Hydrobiologia》1988,167(1):497-504
Body morphology is said to be the all important factor in determining swimming prowess in copepods. Fusion and differentiation of the body (tagmosis) is coupled with advance into the pelagic realm of the Gymnoplea and is thought, by the provision of a rigid thoracic tagma, to promote swimming efficiency. Thus pelagic copepods are believed to be secondarily derived from bottom dwelling predecessors. Experimental evidence is presented to show that the majority of bottom dwelling harpacticoid families, including the most primitive and the most advanced, have representatives that undergo active sustained swimming movements. Such a widespread occurrence is indicative of a conservative evolutionary trait. This primitive behaviour is linked to precopulatory association which takes place necessarily in the water column; it is a feature retained by representatives of all copepod orders. The implication of cephalic appendage vibration (feeding currents) is the essential feature in the swimming success of the Gymnoplea; planktonic efficiency in these is suggested to have evolved coincident with, rather than because of increased tagmosis.  相似文献   
3.
To investigate the role of helmet formation in defense against predation, laboratory experiments were used to analyze the effects of morphological changes in Daphnia on susceptibility to Chaoborus predation. Behavioral observations of Chaoborus preying on helmeted and non-helmeted Daphnia suggest pre-contact advantages for helmeted prey but post-contact advantages for non-helmeted prey. Helmeted Daphnia are better at evading capture by Chaoborus but may also be more easily handled by the predator. Swimming behavior of the prey, which is influenced by the presence of a tailspine, may affect Chaoborus strike distance. These results re-emphasize the potential hydromechanical importance of body shape changes in defense against predation.  相似文献   
4.
Limb movements of restrained stage VI nauplii of Lepas pectinata were studied by cine-photography. Outline drawings were made of successive limb positions in both swimming and grooming activity. The antennae appeared to act as leaky paddles performing both propulsion and food gathering. Free-swimming nauplii averaged 120 limb beats min-1 and a speed of c. 4 mm s-1. Grooming occurred every 7–20 beats.
It was concluded that lack of streamlining favours filtration at the expense of propulsion. The grooming sequence differs from that of balanid nauplii and is one method of transferring food to the vicinity of the mouth, where sorting and rejection take place prior to ingestion. Fine- and coarse-mesh filters presumably exploit different plankton types. The overall behaviour pattern is well-designed for exploitation of scarce food in the oligotrophic conditions of the ocean-surface habitat.  相似文献   
5.
Summary The role of tubular mastigonemes in the reversal of thrust of the anterior flagellum ofPhytophthora cinnamomi was analysed using mastigoneme-specific monoclonal antibodies and immunoflu-orescence and video microscopy. Exposure of live zoospores ofP. cinnamomi to the mastigoneme-specific Zg antibodies caused alterations in the arrangement of mastigonemes on the flagellar surface and at Zg concentrations above 0.3 /ml, mastigonemes became detached from the flagellum. As a consequence of antibody binding to the mastigonemes there were concentration-dependent perturbations in zoospore swimming behaviour and anterior flagellum beat pattern. With increasing antibody concentration zoospores swam more slowly and other parameters of their swimming pattern, such as the wavelength of the swimming helix and the frequency of rotation, were also reduced. The effects of Zg antibodies were specific at two levels: control immunoglobulins or antibodies that bound to other flagellar surface components did not have an effect on motility, and Zg antibodies did not interfere with the motility of zoospores of oomycete species to which they did not bind. The effects of antibody-induced disruption of mastigoneme arrangement strongly support previous hypotheses that tubular mastigonemes are responsible for thrust reversal by the anterior flagellum, enabling it to pull the cell through the surrounding medium.  相似文献   
6.
Antagonists were used to investigate the role of the excitatory amino acid,l-glutamate, in the swim motor program ofHirudo medicinalis. In previous experiments, focal application ofl-glutamate or its non-NMDA agonists onto either the segmental swim-gating interneuron (cell 204) or the serotonergic Retzius cell resulted in prolonged excitation of the two cells and often in fictive swimming. Since brief stimulation of the subesophageal trigger interneuron (cell Tr1) evoked a similar response, we investigated the role of glutamate at these synapses. Kynurenic acid and two non-NMDA antagonists, 6,7-dinitroquinoxaline-2,3-dione (DNQX) and Joro spider toxin, effectively suppressed (1) the sustained activation of cell 204 and the Retzius cell following cell Tr1 stimulation and (2) the monosynaptic connection from cell Tr1 to cell 204 and the Retzius cell, but did not block spontaneous or DP nerve-activated swimming. Other glutamate blockers, including -d-glutamylaminomethyl sulfonic acid,l(+)-2-amino-3-phosphonoproprionic acid and 2-amino-5-phosphonopentanoic acid, were ineffective. DNQX also blocked both indirect excitation of cell 204 and direct depolarization of cell Tr1 in response to mechanosensory P cell stimulation. Our findings show the involvement of non-NMDA receptors in activating the swim motor program at two levels: (1) P cell input to cell Tr1 and (2) cell Tr1 input to cell 204, and reveal an essential role for glutamate in swim initiation via the cell Tr1 pathway.  相似文献   
7.
Propulsive movements of the caudal oscillating flukes produce large forces that could induce equally large recoil forces at the cranial end of the animal, and, thus, affect stability. To examine these vertical oscillations, video analysis was used to measure the motions of the rostrum, pectoral flipper, caudal peduncle, and fluke tip for seven odontocete cetaceans: Delphinapterus leucas, Globicephala melaena, Lagenorhynchus obliquidens, Orcinus orca, Pseudorca crassidens, Stenella plagiodon , and Tursiops truncatus. Animals swam over a range of speeds of 1.4–7.30 m/sec. For each species, oscillatory frequency of the fluke tip increased linearly with swimming speed. Peak-to-peak amplitude at each body position remained constant with respect to swimming speed for all species. Mean peak-to-peak amplitude ranged from 0.02 to 0.06 body length at the rostrum and from 0.17 to 0.25 body length at the fluke tip. The phase relationships between the various body components remain constant with respect to swimming speed. Oscillations of the rostrum were nearly in phase with the fluke tip with phase differences out of—9.4°-33.0° of a cycle period of 360°. Pectoral flipper oscillations trailed fluke oscillations by 60.9°-123.4°. The lower range in amplitude at the rostrum compared to the fluke tip reflects increased resistance to vertical oscillation at the cranial end, which enhances the animal's stability. This resistance is likely due to both active and passive increased body stiffness, resistance on the flippers, phased movements of body components, and use of a lift-based propulsion. Collectively, these mechanisms stabilize the body of cetaceans during active swimming, which can reduce locomotor energy expenditure and reduce excessive motions of the head affecting sensory capabilities.  相似文献   
8.
This study tests whether or not post-exercise oxygen consumption rates ( M o2) in fish are dependent upon how exhaustion is induced. A group of eight Atlantic cod ( Gadus morhua ) were each exercised using (1) a critical swimming speed ( U crit) protocol, (2) an exercise protocol designed to measure anaerobic capacity of fish ( U burst), and (3) a protocol in which the fish were chased to exhaustion manually. M o2 was measured for a 2-h period following exhaustion induced by all three exercise regimes ( U crit, U burst and chase). Post-exercise M o2 following exhaustion from the U burst and chase protocols were significantly higher than post-exercise M o2 following the U crit protocol. Each fish during the U crit protocol exhibited maximal M o2 during exercise rather than during recovery, yet 75% of the fish during U brust recovery and 100% during chase recovery exhibited M o2 higher than that measured during U crit exercise. These results, as well as the large interindividual variations in M o2 among the eight fish, show that post-exhaustion M o2 is specific to the exercise regime employed, thus, investigators must exercise caution when combining results from different exercise protocols and/or individuals.  相似文献   
9.
Korstad  J.  Neyts  A.  Danielsen  T.  Overrein  I.  Olsen  Y. 《Hydrobiologia》1995,313(1):395-398
This study evaluated the use of egg ratio (eggs rotifer–1) and swimming speed (mm min–1) as prediction criteria for production and culture quality in mass cultures of the rotifer Brachionus plicatilis. Egg ratio was determined to be a suitable predictor of rotifer growth and production in the cultures. Low egg ratios (i.e., 0–0.17 eggs rotifer–1) indicate reduced rotifer population over time (i.e., negative net population growth rates). However, at this time egg ratio dynamics are not suitably understood to predict in advance a sudden population collapse.Swimming speed of reproductive, egg-carrying females in the exponential growth phase was 40–45 mm min–1. During exponential growth swimming speed was independent of the food used. Lower swimming speeds were obtained in late stationary phase (10–25 mm min–1) when yeast was used as a food source. Both environmental factors (e.g., accumulating metabolites) and changes in nutritional state of the rotifers may have affected the swimming speed, but environmental factors appear to be the most important. We believe that swimming speed has the potential of becoming an accurate predictor of culture quality in mass cultures of rotifers.  相似文献   
10.
Synopsis Although swimming is energetically costly, a number of studies on salmonid species have demonstrated increased growth rates in fishes forced to swim for prolonged periods at moderate speeds (typically 1–2 body lengths per sec). This suggests that additional energetic costs of swimming are more than met by alternative compensatory gains. The mechanisms underlying such effects are not fully understood. In this paper, we describe an experiment designed to examine one possible mechanism, namely a swimming-induced inhibition of aggression, with consequent beneficial effects on growth. The study used Arctic charr,Salvelinus alpinus, a species for which a positive relationship between exercise and growth has been clearly established. Using direct behavioural observations on small groups, we demonstrate that individuals displaying high levels of aggressive behaviour are able to monopolise access to food and that enforced swimming at a moderate speed (1 body length per sec) reduces the incidence of aggression although not the degree of monopolisation of food shown by aggressive individuals. These results suggest that the enhanced growth rates accompanying enforced swimming may reflect lower energetic costs of reduced aggressive activity rather than improved access to food by subordinates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号