首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiple anthropogenic interventions drive puma survival following wolf recovery in the Greater Yellowstone Ecosystem
Authors:L Mark Elbroch  Howard Quigley  Derek Craighead  Heiko U Wittmer
Institution:1. Panthera, New York, New YorkJoint first authors.;2. Panthera, New York, New York;3. Craighead Beringia South, Kelly, Wyoming;4. School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
Abstract:Humans are primary drivers of declining abundances and extirpation of large carnivores worldwide. Management interventions to restore biodiversity patterns, however, include carnivore reintroductions, despite the many unresolved ecological consequences associated with such efforts. Using multistate capture–mark–recapture models, we explored age‐specific survival and cause‐specific mortality rates for 134 pumas (Puma concolor) monitored in the Greater Yellowstone Ecosystem during gray wolf (Canis lupus) recovery. We identified two top models explaining differences in puma survivorship, and our results suggested three management interventions (unsustainable puma hunting, reduction in a primary prey, and reintroduction of a dominant competitor) have unintentionally impacted puma survival. Specifically, puma survival across age classes was lower in the 6‐month hunting season than the 6‐month nonhunting season; human‐caused mortality rates for juveniles and adults, and predation rates on puma kittens, were higher in the hunting season. Predation on puma kittens, and starvation rates for all pumas, also increased as managers reduced elk (Cervus elaphus) abundance in the system, highlighting direct and indirect effects of competition between recovering wolves and pumas over prey. Our results emphasize the importance of understanding the synergistic effects of existing management strategies and the recovery of large, dominant carnivores to effectively conserve subordinate, hunted carnivores in human‐dominated landscapes.
Keywords:apex predators  biodiversity  competition  hunting  population dynamics  reintroductions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号