首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3633篇
  免费   660篇
  国内免费   470篇
  2024年   2篇
  2023年   197篇
  2022年   121篇
  2021年   205篇
  2020年   273篇
  2019年   301篇
  2018年   226篇
  2017年   246篇
  2016年   212篇
  2015年   186篇
  2014年   198篇
  2013年   280篇
  2012年   204篇
  2011年   186篇
  2010年   154篇
  2009年   183篇
  2008年   177篇
  2007年   191篇
  2006年   174篇
  2005年   112篇
  2004年   108篇
  2003年   110篇
  2002年   129篇
  2001年   131篇
  2000年   90篇
  1999年   91篇
  1998年   86篇
  1997年   57篇
  1996年   52篇
  1995年   34篇
  1994年   27篇
  1993年   8篇
  1992年   7篇
  1982年   2篇
  1958年   3篇
排序方式: 共有4763条查询结果,搜索用时 109 毫秒
1.
2.
Genetically modified plants are widely grown predominantly in North America and to a lesser extent in Australia, Argentina and China but their regions of production are expected to spread soon beyond these limited areas also reaching Europe where great controversy over the application of gene technology in agriculture persists. Currently, several cultivars of eight major crop plants are commercially available including canola, corn, cotton, potato, soybean, sugar beet, tobacco and tomato, but many more plants with new and combined multiple traits are close to registration. While currently agronomic traits (herbicide resistance, insect resistance) dominate, traits conferring “quality” traits (altered oil compositions, protein and starch contents) will begin to dominate within the next years. However, economically the most promising future lies in the development and marketing of crop plants expressing pharmaceutical or “nutraceuticals” (functional foods), and plants that express a number of different genes. From this it is clear that future agricultural and, ultimately, also natural ecosystems will be challenged by the large-scale introduction of entirely novel genes and gene products in new combinations at high frequencies all of which will have unknown impacts on their associated complex of non-target organisms, i.e. all organisms that are not targeted by the insecticidal protein. In times of severe global decline of biodiversity, pro-active precaution is necessary and careful consideration of the likely expected effects of transgenic plants on biodiversity of plants and insects is mandatory.In this paper possible implications of non-target effects for insect and plant biodiversity are discussed and a case example of such non-target effects is presented. In a multiple year research project, tritrophic and bitrophic effects of transgenic corn, expressing the gene from Bacillus thuringiensis (Bt-corn) that codes for the high expression of an insecticidal toxin (Cry1Ab), on the natural enemy species, Chrysoperla carnea (the green lacewing), was investigated. In these laboratory trials, we found prey-mediated effects of transgenic Bt-corn causing significantly higher mortality of C. carnea larvae. In further laboratory trials, we confirmed that the route of exposure (fed directly or via a herbivorous prey) and the origin of the Bt (from transgenic plants or incorporated into artificial diet) strongly influenced the degree of mortality. In choice feeding trials where C. carnea could choose between Spodoptera littoralis fed transgenic Bt-corn and S. littoralis fed non-transgenic corn, larger instars showed a significant preference for S. littoralis fed non-transgenic corn while this was not the case when the choice was between Bt- and isogenic corn fed aphids. Field implications of these findings could be multifold but will be difficult to assess because they interfere in very intricate ways with complex ecosystem processes that we still know only very little about. The future challenge in pest management will be to explore how transgenic plants can be incorporated as safe and effective components of IPM systems and what gene technology can contribute to the needs of a modern sustainable agriculture that avoids or reduces adverse impacts on biodiversity? For mainly economically motivated resistance management purposes, constitutive high expression of Bt-toxins in transgenic plants is promoted seeking to kill almost 100% of all susceptible (and if possible heterozygote resistant) target pest insects. However, for pest management this is usually not necessary. Control at or below an established economic injury level is sufficient for most pests and cropping systems. It is proposed that partially or moderately resistant plants expressing quantitative rather than single gene traits and affecting the target pest sub-lethally may provide a more meaningful contribution of agricultural biotechnology to modern sustainable agriculture. Some examples of such plants produced through conventional breeding are presented. Non-target effects may be less severe allowing for better incorporation of these plants into IPM or biological control programs using multiple control strategies, thereby, also reducing selection pressure for pest resistance development.  相似文献   
3.
Emphasis has been put in recent ecological research on investigating phylogenetic, functional and taxonomic facets of biological diversity. While a flourishing number of indices have been proposed for assessing functional diversity, surprisingly few options are available to characterize functional rarity. Functional rarity can play a key role in community and ecosystem dynamics. We introduce here the funrar R package to quantify functional rarity based on species trait differences and species frequencies at local and regional scales. Because of the increasing availability of big datasets in macroecology and biogeography, we optimized funrar to work with large datasets of thousands of species and sites. We illustrate the use of the package to investigate the functional rarity of North and Central American mammals.  相似文献   
4.
5.
6.
In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from micro‐ to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism‐focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change. We then take a forward‐looking viewpoint on how alpine stream biologists can make better use of existing data sets through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid environmental change in these sentinel ecosystems.  相似文献   
7.
Climate change is expected to alter the distribution of tree species because of critical environmental tolerances related to growth, mortality, reproduction, disturbances, and biotic interactions. How this is realized in 21st century remains uncertain, in large part due to limitations on plant migration and the impacts of landscape fragmentation. Understanding these changes is of particular concern for forest management, which requires information at an appropriately fine spatial resolution. Here we provide a framework and application for tree species vulnerability to climate change in the eastern United States that accounts for influential drivers of future distributions. We used species distribution models to project changes in habitat suitability at 800 m for 40 tree species that vary in physiology, range, and environmental niche. We then developed layers of adaptive capacity based on migration potential, forest fragmentation, and propagule pressure. These were combined into metrics of vulnerability, including an overall index and spatially explicit categories designed to inform management. Despite overall favorable changes in suitability, the majority of species and the landscape were considered vulnerable to climate change. Vulnerability was significantly exacerbated by projections of pests and pathogens for some species. Northern and high‐elevation species tended to be the most vulnerable. There were, however, some notable areas of particular resilience, including most of West Virginia. Our approach combines some of the most important considerations for species vulnerability in a straightforward framework, and can be used as a tool for managers to prioritize species, areas, and actions.  相似文献   
8.
The need to integratein situ conservation into the planning process is outlined, and the importance of vegetation survey to determine conservation priorities and to identify areas suitable forin situ conservation is stressed. A case is presented, drawing on experience gained in Zimbabwe, of how a botanical institute can become an integral part of biological conservation. The institute should consist of a herbarium, a botanical garden, a gene bank and a vegetation survey unit. The function of each section, how they interlink, and how they can be integrated are discussed.  相似文献   
9.
Understanding changes in biodiversity requires the implementation of monitoring programs encompassing different dimensions of biodiversity through varying sampling techniques. In this work, fish assemblages associated with the “outer” and “inner” sides of four marinas, two at the Canary Islands and two at southern Portugal, were investigated using three complementary sampling techniques: underwater visual censuses (UVCs), baited cameras (BCs), and fish traps (FTs). We firstly investigated the complementarity of these sampling methods to describe species composition. Then, we investigated differences in taxonomic (TD), phylogenetic (PD) and functional diversity (FD) between sides of the marinas according to each sampling method. Finally, we explored the applicability/reproducibility of each sampling technique to characterize fish assemblages according to these metrics of diversity. UVCs and BCs provided complementary information, in terms of the number and abundances of species, while FTs sampled a particular assemblage. Patterns of TD, PD, and FD between sides of the marinas varied depending on the sampling method. UVC was the most cost‐efficient technique, in terms of personnel hours, and it is recommended for local studies. However, for large‐scale studies, BCs are recommended, as it covers greater spatio‐temporal scales by a lower cost. Our study highlights the need to implement complementary sampling techniques to monitor ecological change, at various dimensions of biodiversity. The results presented here will be useful for optimizing future monitoring programs.  相似文献   
10.
景观生态网络研究进展   总被引:33,自引:19,他引:14  
作为生态学重要的概念与方法,生态网络是景观生态学研究的热点问题,也是耦合景观结构、生态过程和功能的重要途径。景观生态网络对于保护生物多样性、维持生态平衡、增加景观连接度具有重要意义。从景观生态网络的相关理论、研究进展、研究方法模型等进行分析,并对其应用前景进行展望,主要介绍了传统景观格局分析、网络分析、模型模拟等方法的适用性与特点,并分析了景观生态网络在城市景观格局优化、自然保护区规划、生物多样性保护、土地规划等领域的应用,最后提出了研究的主要问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号