首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of salinity on photosynthesis,leaf anatomy,ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves
Authors:Paramita?Nandy  Sauren?Das  Monoranjan?Ghose  Robert?Spooner-Hart
Institution:(1) Agricultural & Ecological Research Unit, Indian Statistical Institute, 203, B.T.Road, Kolkata, 700 108, India;(2) Centre for Plant and Food Science (PAFS), University of Western Sydney, Hawkesbury Campus (Building S8), Locked Bag 1797, Penrith South DC, 1797, NSW, Australia
Abstract:Five species of mangroves (Bruguiera gymnorrhiza, Excoecaria agallocha, Heritiera fomes, Phoenix paludosa and Xylocarpus granatum) were investigated with respect to their photosynthesis rate, chlorophyll content, mesophyll conductance, specific leaf area, stomatal conductance and photosynthetic nitrogen use efficiency under saline (15–27 PPT) and non-saline (1.8–2 PPT) conditions. Some inorganic elements were estimated from the leaf samples to compare the concentrations with change in salinity. Elevated assimilation rate coupled with increased chlorophyll content, more mesophyll and stomatal conductance and higher specific leaf area in non-saline condition indicates that these mangroves can grow well even with minimal salinity in soil. In B. gymnorrhiza, E. agallocha and P. paludosa the optimum PAR acquisition for photosynthesis was higher under salt stress, while the maximal rate of assimilation was lower even with minimal salinity. H. fomes and X. granatum followed the opposite trend, where the peak photosynthesis rate was lower under non-saline conditions even at a higher irradiance than in the saline forest. This indicates less affinity of H. fomes and X. granatum to high substrate salinity. Accumulation of Na+ increased in plants in saline substrate, while in most of the species, salinity imposed reduction in Ca+ and Mg+ uptake. Increased K+ content can be attributed to high substrate level K+ in non-saline soil. Trace amount of salinity induced Cu++ detected in leaves of H. fomes may impart some toxic effects. Photosynthetic nitrogen use efficiency increased in non-saline soil that can be attributed to higher photosynthetic peak in most of the species and/or lower nitrogen accumulation in plant samples.
Keywords:Chlorophyll  Mangrove  PAR  Photosynthesis  Salinity  Stomatal conductance
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号