首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Control of emerging infectious diseases using responsive imperfect vaccination and isolation
Authors:Ball Frank G  Knock Edward S  O'Neill Philip D
Institution:School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK. frank.ball@nottingham.ac.uk
Abstract:This paper is concerned with a stochastic model for the spread of an SEIR (susceptible --> exposed (= latent) --> infective --> removed) epidemic among a population partitioned into households, featuring different rates of infection for within and between households. The model incorporates responsive vaccination and isolation policies, based upon the appearance of diagnosed cases in households. Different models for imperfect vaccine response are considered. A threshold parameter R*, which determines whether or not a major epidemic can occur, and the probability of a major epidemic are obtained for different infectious and latent period distributions. Simpler expressions for these quantities are obtained in the limiting case of infinite within-household infection rate. Numerical studies suggest that the choice of infectious period distribution and whether or not latent individuals are vaccine-sensitive have a material influence on the spread of the epidemic, while, for given vaccine efficacy, the choice of vaccine action model is less influential. They also suggest that an effective isolation policy has a more significant impact than vaccination. The results show that R* alone is not sufficient to summarise the potential for an epidemic.
Keywords:Epidemic  Vaccination  Emerging diseases  Household models  Reproduction numbers
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号