首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Species diversity and decomposition in laboratory aquatic systems: the role of species interactions
Authors:MARIA LETIZIA COSTANTINI  LORETO ROSSI
Institution:Department of Genetics and Molecular Biology “C. Darwin”–Ecology Area‐, University of Rome “Sapienza”, Rome, Italy
Abstract:1. Interest in the effects of biodiversity on ecosystem processes is increasing, stimulated by the global species decline. Different hypotheses about the biodiversity‐ecosystem functioning (BEF) relationship have been put forward and various underlying mechanisms proposed for different ecosystems. 2. We investigated BEF relationships and the role of species interactions in laboratory experiments focussing on aquatic decomposition. Species richness at three different trophic levels (leaf detritus, detritus‐colonising fungi and invertebrate detritivores) was manipulated, and its effects on leaf mass loss and fungal growth were assessed in two experiments. In the first, monocultures and mixtures of reed (Phragmites australis), alder (Alnus glutinosa) and oak (Quercus cerris) leaf disks were incubated with zero, one or eight fungal species. Leaf mixtures were also incubated with combinations of three and five fungal species. In the second experiment, reed leaf disks were incubated with all eight fungal species and offered to combinations of one, two, three, four or five macroinvertebrate detritivores with different feeding modes. 3. Results from the first experiment showed that leaf mass loss was directly related to fungal mass and varied unimodally with the number of fungi, with a maximum rate attained at intermediate diversity in oak and reed and at maximum diversity in alder (the fastest decomposing leaf). 4. Mixing litter species stimulated fungal growth but interactions between species of fungi slowed down decomposition. In contrast, mixtures of macroinvertebrate detritivores reduced fungal mass and accelerated leaf decomposition. Possible explanations of the positive relationship between detritivore diversity and decomposition are a reduction in fungal dominance and a differentiation in the use of different resource patches promoted by higher fungal diversity. 5. In conclusion, the results show a general increase in decomposition rate with increasing biodiversity that is controlled by within‐ and between‐trophic level interactions, and support the hypothesis of both bottom‐up and top‐down effects of diversity on this process.
Keywords:biodiversity  competition  detritivores  fungi  leaf mass loss
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号