首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sex‐specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics,ageing, and life history in seed beetles
Authors:Mirko ?or?evi?  Biljana Stojkovi?  Uro? Savkovi?  Elina Immonen  Nikola Tuci?  Göran Arnqvist
Institution:1. Department of Evolutionary Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia;2. Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia;3. Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden;4. Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, SwedenBoth the authors shared senior authorship.
Abstract:The role of mitochondrial DNA for the evolution of life‐history traits remains debated. We examined mitonuclear effects on the activity of the multisubunit complex of the electron transport chain (ETC) involved in oxidative phosphorylation (OXPHOS) across lines of the seed beetle Acanthoscelides obtectus selected for a short (E) or a long (L) life for more than >160 generations. We constructed and phenotyped mitonuclear introgression lines, which allowed us to assess the independent effects of the evolutionary history of the nuclear and the mitochondrial genome. The nuclear genome was responsible for the largest share of divergence seen in ageing. However, the mitochondrial genome also had sizeable effects, which were sex‐specific and expressed primarily as epistatic interactions with the nuclear genome. The effects of mitonuclear disruption were largely consistent with mitonuclear coadaptation. Variation in ETC activity explained a large proportion of variance in ageing and life‐history traits and this multivariate relationship differed somewhat between the sexes. In conclusion, mitonuclear epistasis has played an important role in the laboratory evolution of ETC complex activity, ageing, and life histories and these are closely associated. The mitonuclear architecture of evolved differences in life‐history traits and mitochondrial bioenergetics was sex‐specific.
Keywords:Bruchinae  coadaptation  epistasis  evolution of ageing  mitochondria  mtDNA  OXPHOS  senescence  sexual dimorphism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号