首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   18篇
  国内免费   8篇
  2023年   2篇
  2021年   1篇
  2020年   7篇
  2019年   7篇
  2018年   3篇
  2017年   6篇
  2016年   16篇
  2015年   9篇
  2014年   8篇
  2013年   12篇
  2012年   5篇
  2011年   12篇
  2010年   6篇
  2009年   11篇
  2008年   10篇
  2007年   7篇
  2006年   9篇
  2005年   8篇
  2004年   12篇
  2003年   9篇
  2002年   6篇
  2001年   15篇
  2000年   4篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   7篇
  1995年   3篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有242条查询结果,搜索用时 31 毫秒
1.
The silverleaf whitefly (Bemisia argentifolii Bellows and Perring) is a widely distributed pest of cotton (Gossypium hirsutum L.) and the population levels may be affected by rates of nitrogen fertilization and planting date. Field experiments were conducted to investigate the impact of cotton planting date and nitrogen fertilization on silverleaf whitefly population dynamics. Cotton was planted on 26 April and 8 June, for the early and late plantings, respectively. Nitrogen treatments consisted of soil applications of 0, 112, 168 and 224 kg of nitrogen per hectare. The population levels of adult whiteflies were much higher on early-planted cotton than on late planting. Also, increased numbers of adult whiteflies on both early and late plantings occurred with increasing amounts of applied nitrogen.Applied nitrogen increased seed cotton yields of early plantings but had no effect on the yields of late plantings.  相似文献   
2.
Dolichos yellow mosaic disease (DYMD) affects the production of dolichos in South Asia. Diseased plants produce characteristic bright yellow mosaic patches on the leaves and early infections cause reductions in yield. The putative dolichos yellow mosaic virus (DoYMV) was transmitted poorly (maximum 18.3% transmission) by the whitefly, Bemisia tabaci. DoYMV has a narrow host range and infected only Lablab purpureus and L. purpureus var. typicum out of the 36 species tested. Virus was detected using monoclonal antibodies in a triple‐antibody sandwich enzyme‐linked immunosorbent assay and by PCR. Complete DNA‐A components of DoYMV isolates from Mysore and Bangalore, South India, were sequenced, but several attempts to identify DNA‐B and DNA‐β were unsuccessful. DoYMV isolates shared DNA‐A nucleotide identities of 92.5–95.3% with previously described isolates from North India and Bangladesh. They were most similar to mungbean‐infecting begomoviruses at 61.6–64.4% of DNA‐A nucleotide identities. Phylogenetic analyses of DNA‐A sequences grouped the dolichos‐infecting and mungbean‐infecting begomoviruses into a distinct cluster away from begomoviruses infecting non‐leguminous plants in the Indian subcontinent. Antigenically, legume‐infecting begomoviruses were most similar to each other compared with non‐legume viruses. Collectively, these results indicate that legume‐infecting begomoviruses in the Indian subcontinent belonged to a distinct lineage of Old World begomoviruses.  相似文献   
3.
Abstract

The biological effect of plant extracts on the two predators C. carnea and C. undecimpunctata was studied in the laboratory. Treated B. brassicae was offered to the newly hatched larvae of the two predators. The rate of prey consumption and duration of the larval instars of the two predators were slightly affected as a result of the treatments of the plant extracts. Adults of the aphid parasite D. Rapae and the whitefly parasite E. Mundus were exposed to the plant extracts via feeding on treated honey droplets or parasitized treated hosts. Mortality percentages of D. Rapae fed on honey contaminated with plant extracts were 50 and 80% for extracts of Melia fruits in ethanol and in petroleum ether, respectively. Mortalities in parasites developed in hosts treated with plant extracts of Neem fruits in ethanol and Melia flowers in petroleum ether in were 33.3 and 81.5%, respectively. Similar results were obtained when E. Mundus received the same treatments of the plant extracts.  相似文献   
4.
Bemisia tabaci is a complex of putative species that exhibit a strong geographical pattern. Crossing experiments have revealed various degrees of reproductive isolation between these nascent species, ranging between fertile first‐generation hybrids (F1) and no F1 at all. However, the relevance of these results under natural conditions is generally not known. The worldwide invasion of the putative species Middle East‐Asia Minor 1 (MEAM1) has caused secondary contacts between allopatric species, which in turn provide an opportunity to detect potential hybrids in nature. A total of 346 female B. tabaci were collected in 2003 and 2005 in the North East of Morocco and assigned to MEAM1 (119), Mediterranean (Med) (225) and a new putative species (2) using mitochondrial cytochrome oxidase (mtCOI) gene sequences. MEAM1 and Med individuals were characterized at seven microsatellite loci. MEAM1 and Med were found to be sympatric in 11 of 12 samples (6 fields/year). As previously reported from Spain, MEAM1 frequency decreased over time. The genetic data are consistent with a recent introduction of MEAM1. A Bayesian clustering analysis (Structure ) distinguished two groups, which were 100% consistent with the mtCOI groups. From several lines of evidence, two individuals were identified as hybrids. Assignment profiles using NewHybrids and allele composition indicated that they were not F1 hybrids. The results are discussed in relation to the secondary endosymbiont infection status determined on a sample of individuals, and the contrasting outcomes of the reported crossing experiments between MEAM1 and Med.  相似文献   
5.
The tobacco whitefly Bemisia tabaci (Gennadius) cryptic species complex and of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are extensively reported as destructive pests in vegetable crops worldwide. A survey was conducted in 2011 and 2012 to determine the occurrence and genetic diversity present in the populations of these whiteflies in the major vegetable production areas of Costa Rica. Insect samples were collected from sweet pepper (Capsicum annuum L.), tomato (Solanum lycopersicum L.), common bean (Phaseolus vulgaris L.) and weeds present in commercial crops either in open field or greenhouse conditions. PCR‐RFLP analysis of mitochondrial cytochrome c oxidase subunit 1 gene (mtCOI) sequences of 621 whitefly individuals confirmed the presence of the Mediterranean (MED) type of the B. tabaci and of T. vaporariorum in most sampled regions. Also, individuals of the Middle East‐Asia Minor 1 (MEAM1) type of the B. tabaci were observed in low numbers. Contingency analyses based on type of crop, geographical region, whitefly species, year of collection and production system confirmed that T. vaporariorum was the most frequent species in vegetable production areas in Costa Rica, both in greenhouses and in open fields. B. tabaci MED is likely spreading to new areas of the country, whereas B. tabaci MEAM1 was mostly absent or rarely found. Comparisons of mtCOI sequences from B. tabaci individuals revealed the presence of four B. tabaci sequence haplotypes (named MED‐i, MED‐ii, MEAM1‐i, MEAM1‐xviii) in Costa Rica, three of them identical to B. tabaci haplotypes previously reported in the Western Hemisphere and other parts of the world. Analysis of sequences of T. vaporariorum individuals revealed a more complex population with the presence of 11 haplotypes, two of which were identical to T. vaporariorum sequences reported from other countries.  相似文献   
6.
Bemisia tabaci‐transmitted geminiviruses are one of the major threats on cassava and vegetable crops in Africa. However, to date, few studies are available on the diversity of B. tabaci and their associated endosymbionts in Africa. More than 28 species have been described in the complex of B. tabaci cryptic species; among them, 2 are invasive pests worldwide: MED and MEAM1. In order to assess the species diversity of B. tabaci in vegetable crops in Senegal, several samplings in different localities, hosts and seasons were collected and analyzed with nuclear (microsatellite) and mitochondrial (COI) markers. The bacterial endosymbiont community was also studied for each sample. Two species were detected: MED Q1 and MEAM1 B. Patterns of MED Q1 (dominance on most of the samples and sites, highest nuclear and mitochondrial diversity and broader secondary endosymbiont community: Hamiltonella, Cardinium, Wolbachia and Rickettsia), point toward a predominant resident begomovirus vector group for MED Q1 on market gardening crops. Furthermore, the lower prevalence of the second species MEAM1 B, its lower nuclear and mitochondrial diversity and a narrower secondary endosymbiont community (Hamiltonella/Rickettsia), indicate that this genetic group is exotic and results from a recent invasion in this area.  相似文献   
7.
【目的】温室白粉虱Trialeurodes vaporariorum(Westwood)是为害北方地区花卉蔬菜的主要粉虱种类,烟粉虱Bemisia tabaci(Gennadius)则在近些年逐渐频繁的花卉贸易活动中扩散至黑龙江省部分地区并取代了白粉虱成为当地温室害虫的优势物种,番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)是烟粉虱传播的一种重要双生病毒,对作物的危害十分严重,然而该病毒对本地白粉虱的影响及对烟粉虱与白粉虱种间竞争关系的影响尚待研究。【方法】本研究观察记录感染番茄黄化曲叶病毒的番茄植株上温室白粉虱和烟粉虱的种群动态及番茄形态和部分生理指标的变化。【结果】结果表明:1)有烟粉虱滋生的番茄植株矮小,根系发达;2)有白粉虱滋生的番茄略微矮粗,影响较小;3)感染病毒的番茄矮粗或矮小,根部无明显变化;4)染毒带虫相对于带虫处理而言,在白粉虱试验中,番茄植株矮小,根系生物量也骤减;与此相反,在烟粉虱试验中,番茄的反应相对缓和;5)此外,不同酶类对植株染毒的响应不同:Ach E酶活高不利于植株,而GST酶活高则有利于植株。【结论】总体而言:烟粉虱单独作用很不利于苗期番茄,白粉虱对苗期番茄没有明显的直接影响;而感染病毒会缓解烟粉虱对番茄的强烈刺激,而加重白粉虱对番茄的作用,即染毒使带白粉虱的苗期番茄生长发育受到明显抑制。与番茄变化情况相对应的是,染毒番茄上烟粉虱产卵较少,但在发育前期(从卵到伪蛹)存活率较高;染毒番茄上白粉虱产卵较多,但在前期存活率较低。本研究可为高纬度地区粉虱综合防控提供参考。  相似文献   
8.
Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), one of the most economically important agricultural pests worldwide, is the vector of cassava mosaic geminiviruses that cause cassava mosaic disease (CMD). In East and Central Africa, a severe CMD pandemic that spread from Uganda in the late 1980s still continues to devastate cassava crops. To assess the association of distinct B. tabaci genetic groups with the CMD pandemic, mitochondrial cytochrome oxidase I gene sequences were analysed from whiteflies collected during surveys conducted from 2010 to 2013 in Tanzania. Four genetic groups – Sub‐Saharan Africa 1 (SSA1), Mediterranean, Indian Ocean and East Africa 1, and a group of unknown whitefly species were identified. SSA1 comprised four subgroups: SSA1‐SG1, SSA1‐SG2, SSA1‐SG1/2 and SSA1‐SG3. SSA1‐SG1 was confined to the pandemic‐affected north‐western parts of Tanzania whilst SSA1‐SG2 and SSA1‐SG3 were found in the central and eastern parts not yet affected by the pandemic. The CMD pandemic front was estimated to lie in Geita Region, north‐western Tanzania, and to be spreading south‐east at a rate of ca 26 km/year. The pandemic‐associated B. tabaci SSA1‐SG1 predominated up to 180 km ahead of the CMD front indicating that changes in whitefly population characteristics precede changes in disease characteristics.  相似文献   
9.
温室白粉虱Trialeurodes vaporariorum(Westwood)和烟粉虱Bemisia tabaci(Gennadius)是严重危害葫芦科、茄科和豆科等多种蔬菜的主要害虫,具有分布范围广、种群数量大、繁殖力强等特性。作者通过田间试验研究了蔬菜保护地内间作温室粉虱非嗜食植物芹菜(Apium graveliens L.)对其的防治效果。结果表明:与空白处理和常规化学防治相比,在番茄和黄瓜保护地内间作芹菜对温室粉虱均具有显著的防治效果,驱避效果分别达到98.0%和84.5%。这些结果是初步的,但其为进一步研究温室粉虱的寄主选择机制和非化学防治方法提供了依据。  相似文献   
10.
All Bemisia tabaci individuals harbour an obligate bacterial symbiont (Portiera aleyrodidarum), and many also harbour non‐essential facultative symbionts. The association of symbiotic bacteria with the various genetic groups of B. tabaci remains unknown for East Africa. This study aimed to assess any association between the various whitefly genetic groups and the endosymbionts they harbour; to investigate if a unique endosymbiont is associated with super‐abundant whiteflies, and to provide baseline information on endosymbionts of whiteflies for a part of East Africa. Whiteflies collected during surveys in Tanzania were genotyped and screened for the presence of the obligate and six secondary symbionts (SS): Rickettsia (R), Hamiltonella (H), Arsenophonus (A), Wolbachia (W), Cardinium (C) and Fritschea (F). The results revealed the presence of Mediterranean (MED), East Africa 1 (EA1), Indian Ocean (IO) and Sub‐Saharan Africa 1 (SSA1) genetic groups of Bemisia tabaci, with SSA1 further clustered into four sub‐groups: SSA1‐SG1, SSA1‐SG2, SSA1‐SG1/2 and SSA1‐SG3. F was completely absent from all of the whiteflies tested while R was always found in double or multiple infections. In general, no particular symbiont appeared to be associated with the super‐abundant SSA1‐SG1 B. tabaci, although A or AC infections were common among infected individuals. The most striking feature of these super‐abundant whiteflies, dominating cassava mosaic disease pandemic areas, was the high prevalence of individuals uninfected by any of the six SS tested. This study of the endosymbionts of B. tabaci in East Africa showed contrasting patterns of infection in crop and weed hosts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号