首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2019年   1篇
  2014年   2篇
  2008年   1篇
  2001年   2篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Vertebral bodies of teleost fish are formed by the sclerotomal bone covering the chordacentrum. The internal part of the sclerotomal bone is composed of an amphicoelous hourglass shaped autocentrum, which is common in most fish species. In contrast, the external shape of the sclerotomal bone varies extensively among species. There are multiple hypotheses regarding the composition and formation of the external structure. However, as they are based on studies of few extant or extinct species, their applicability to other species remains to be clarified. To understand the morphology, formation, and composition of vertebral bodies in teleosts, we performed a comparative analysis using micro-CT scans of 32 species from 10 orders of Teleostei and investigated the detailed morphology of the sclerotomal bone, especially its plate-like ridge and trabeculae. We discovered two structural characteristics that are shared among most of the examined species. One was the sheet-like trabeculae that extend radially from the center of the vertebral body with a constant thickness. The other was the presence of hollow spaces on the internal parts of the lateral ridge and trabeculae. The combination of different arrangements of sheet-like trabeculae and internal hollow spaces formed different shapes of the lateral structure of the vertebral body. The properties of these two characteristics suggest that the external part of the sclerotomal bone grows outward by deposition at the bone tip, and that, concurrently, bone absorption occurs in the internal part of the sclerotomal bone. The vertebral arches were also formed by the sheet-like trabeculae, indicating that both, the vertebral body and the arches, are formed by the same component. The micro-CT scanning data were uploaded to a public database so they can be used for future studies on fish vertebrae.  相似文献   
2.
3.
We aimed to investigate the elastic modulus of trabeculae using tensile tests and assess the effects of nanostructure at the hydroxyapatite (HAp) crystal scale on the elastic modulus. In the experiments, 18 trabeculae that were at least 3 mm in length in the proximal epiphysis of three adult bovine femurs were used. Tensile tests were conducted using a small tensile testing device coupled with microscopy under air-dried condition. The c-axis orientation of HAp crystals and the degree of orientation were measured by X-ray diffraction. To observe the deformation behavior of HAp crystals under tensile loading, the same tensile tests were conducted in X-ray diffraction measurements. The mineral content of specimens was evaluated using energy dispersive X-ray spectrometry. The elastic modulus of a single trabecula varied from 4.5 to 23.6 GPa, and the average was 11.5±5.0 GPa. The c-axis of HAp crystals was aligned with the trabecular axis and the crystals were lineally deformed under tensile loading. The ratio of the HAp crystal strain to the tissue strain (strain ratio) had a significant correlation with the elastic modulus (r=0.79; P<0.001). However, the mineral content and the degree of orientation did not vary widely and did not correlate with the elastic modulus in this study. It suggests that the strain ratio may represent the nanostructure of a single trabecula and would determine the elastic modulus as well as mineral content and orientation.  相似文献   
4.
Abstract To obtain new ideas on optimal composite material structure, the fine structures of the trabeculae of the elytra of Allomyrina dichotoma (Iinné) and Prosopocoilus inclinatus (Motschulsky) were investigated using scanning electron microscope. The shape and size of trabeculae, which form the internal bridges between the upper and lower surfaces of the elytra, depend on the species of beetles. Complex surface structures (stripes or bandings) were found in those of A. dichotoma , but less in P. inclinatus . The trabeculae consisted of three parts: the surface part, the cylindrical layer and the central part. The surface and the central part were mainly protein substances which could be dissolved by KOH. The cylindrical layer had many chitin fibers with different orientation, and they were embedded in a protein matrix, and were connected to endocuticle chitin fibers on the upper and lower parts of the lamination.  相似文献   
5.
Individual trabecula segmentation (ITS) technique can decompose the trabecular bone network into individual trabecular plates and rods and is capable of quantifying the plate/rod-related microstructural characteristics of trabecular bone. This novel technique has been shown to be able to provide in-depth insights into micromechanics and failure mechanisms of human trabecular bone, as well as to distinguish the fracture status independent of area bone mineral density in clinical applications. However, the plate/rod microstructural parameters from ITS have never been correlated to experimentally determined mechanical properties of human trabecular bone. In this study, on-axis cylindrical trabecular bone samples from human proximal tibia (n=22), vertebral body (n=10), and proximal femur (n=21) were harvested, prepared, scanned using micro computed-tomography (µCT), analyzed with ITS and mechanically tested. Regression analyses showed that the plate bone volume fraction (pBV/TV) and axial bone volume fraction (aBV/TV) calculated by ITS analysis correlated the best with elastic modulus (R2=0.96–0.97) and yield strength (R2=0.95–0.96). Trabecular plate-related microstructural parameters correlated highly with elastic modulus and yield strength, while most rod-related parameters were found inversely and only moderately correlated with the mechanical properties. In addition, ITS analysis also identified that trabecular bone at human femoral neck had the highest trabecular plate-related parameters while the other sites were similar with each other in terms of plate–rod microstructure.  相似文献   
6.
为了从仿生学的角度 ,获得复合材料构造的最优化设计的指导思想 ,用扫描电子显微镜考察了独角仙和锹形虫前翅中的小柱微细构造 ,结果在昆虫形态学方面也得到了一些新的见解 :1 )与甲虫前翅上下层相连的小柱 ,其形状和尺寸的大小因甲虫种类而异。不过 ,和以往的认识不同的是 ,两种甲虫前翅的小柱具有类似的结构 ,它们均为非中空的实柱 ,并由中心部和环状的几丁质纤维层构成。其中心部主要是溶解于KOH溶液的物质 (蛋白一类的物质 ) ,环状纤维层中的几丁质纤维 ,在层和层之间相互不同的方向排列着 ,并各自与前翅的上下层中的几丁质纤维连续地连接着 ;2 )独角仙前翅小柱的表面有复杂的纹样 ,而锹形虫的小柱表面只有非常简单的 (几乎没有 )纹样。此外 ,业已证明 ,上述的小柱构造对层状纤维强化复合材料而言 ,的确是一种非常巧妙的 ,可极其有效地提高复合材料抗剥离性能的生体构造。  相似文献   
7.
The rostral cartilages of batoid fishes were examined to elucidate their development, morphology and homology. Comparison of a variety of rostral cartilages among elasmobranchs with other groups of vertebrates shows that rostral cartilages originate embryologically from the trabecula and/or lamina orbitonasalis. Because different morphogenetic patterns of the derivatives of the two embryonic cartilages give rise to a wide variety of forms of rostral cartilages even within elasmobranchs, and because morphogenesis involves complex interactions among participating structures in the ethmo-orbital area, we put forward conceptual and empirical discussions to elucidate the homology of the rostral cartilages in batoid fishes. With six assumptions given in this study and based on recent discussions of biological and historical homology, our discussions centre on: (1) recognition of complex interactions of participating biological entities in development and evolution; (2) elucidation of a set of interacting biological and evolutionary factors to define a given morphological structure; (3) assessment of causal explanations for similarities or differences between homologous structures by determining genetic, epigenetic and evolutionary factors. Examples of conceptual approaches are given to make the approaches testable. Although a paucity of knowledge of rostral cartilage formation is the major obstacle to thorough analysis of the conceptual framework, several tentative conclusions are made on the homology of rostral cartilages that will hopefully attract more research on development and evolution in vertebrate morphology. These are: (1) the rostral cartilage in each group of vertebrates examined can be defined by both developmentally associated and adult structural attributes, yet such data do not allow us to assess homology of a variety of forms of rostral cartilages at higher taxonomic categories; (2) the entire rostral cartilage in elasmobranchs is formed by the contribution of the embryonic trabecula and lamina orbitonasalis. The status of the development and homology of the rostral cartilage in holocephalans remains uncertain; (3) there is no simple picture of evolution of rostral cartilages among three putative monophyletic assemblages of elasmobranchs, galeomorphs, squaloids (possibly plus Squatina, Chlamydoselachus and hexanchoids as the orbitostylic group) and batoid fishes. It is highly likely that rostral cartilages in each subgroup or subgroups of these assemblages may be of phylogenetic significance but that it may not serve as a basis to unite these assemblages into much higher assemblages; (4) the tripodal rostral cartilage is unique in form in the group including some carcharhinoid and lamnoid sharks. The status of the analogous tripodal cartilage in some squaloids remains uncertain. The unfused tripodal cartilage of the electric ray Narke is interpreted as developmentally equivalent to, but not homologous with, the unfused or fused ones in the sharks; (5) the rostral cartilage in the electric ray Torpedo is uniquely formed because of its embryonic origin solely from the ventro-medial part of the lamina orbitonasalis, but it is regarded as homologous with the rostral cartilages which are formed by the trabecula and other components of the lamina orbitonasalis in other batoid fishes; (6) the cornu trabecula contributes to the formation of the ventral stem of the rostral cartilage at least in elasmobranchs, especially to a particular set of rostral cartilages, i.e. the tripodal rostral cartilage in the shark Scyliorhinus and dorso-ventrally flattened rostral shaft in the narcinidid electric rays; (7) there is a unique form of a rostral shaft with rostral appendix in skates and probably guitarfishes; (8) there is no rostral cartilage in adult benthic stingrays, pelagic stingrays Dasyatis violacea and Myliobatidae, although it is present in embryonic stages; (9) there is a unique form of the rostral cartilage as a rostral projection from the dorso-lateral part of the lamina orbitonasalis in pelagic stingrays Rhinopteridae and Mobulidae, which together with part of the pectoral fins, forms a pair of cephalic fins; (10) different developmental mechanisms may be responsible for the absence or loss of rostral cartilages in different groups, i.e. absence of the cartilage derived from the medial area of the trabecula in Torpedo vs absence of the rostral cartilage in benthic stingrays; (11) the rostral cartilages in some placental mammals (cetaceans and sirenians) arise only from the medial area of the trabecula because monotreme and placental mammals do not form the trabecula cranii; (12) some actinopterygians and sacropterygians possess a rostral cartilage which originates only from the medial area of the trabecula. One scombroid group, including Sardini and Thunnini, Scomberomorus, Acanthocybium, Istiophoridae and Xiphias, possesses a unique larval beak composed of the rostral cartilage, ethmoid cartilage and premaxillar bone. The development and homology of other rostral cartilages remain to be further elucidated; (13) urodeles possess a medial rostral process whose anlage is probably developmentally equivalent to that in batoid fishes but the occurrence in urodeles is either atavistic or unique (autapomorphic); (14) the upper jaw of tadpoles is unique in possessing the suprarostral cartilage; the anlage of the cartilage is probably developmentally equivalent to the outgrowth of the cornu trabecula in batoid fishes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号