首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   47篇
  国内免费   193篇
  2023年   8篇
  2022年   10篇
  2021年   23篇
  2020年   29篇
  2019年   26篇
  2018年   22篇
  2017年   19篇
  2016年   16篇
  2015年   24篇
  2014年   33篇
  2013年   23篇
  2012年   18篇
  2011年   13篇
  2010年   18篇
  2009年   15篇
  2008年   19篇
  2007年   18篇
  2006年   9篇
  2005年   23篇
  2004年   7篇
  2003年   17篇
  2002年   15篇
  2001年   4篇
  2000年   13篇
  1999年   7篇
  1998年   12篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1976年   2篇
排序方式: 共有472条查询结果,搜索用时 93 毫秒
1.
Recent debate on whether or not mahogany ( Swietenia macrophylla King) is threatened by the international timber trade has focused on the breadth of its range and estimates of the remaining stock of mahogany trees. These data are inadequate to reveal the status of mahogany populations, both because they are incomplete in areal extent and because they do not reveal population parameters such as the existence or density of young trees smaller than commercial size. However, there is sufficient information on the regeneration ecology of mahogany to indicate that under natural conditions this species regenerates in essentially even-aged stands after catastrophic disturbances destroy many or most trees, and, in the case of fires and flooding, saplings and seedlings as well. Adult mahoganies tend to survive these events, and regenerate by shedding seed onto the resulting gaps or clearings. This ecological strategy makes mahogany vulnerable to logging, first because juvenile mahoganies are not found in the understorey, and secondly because logging operations shortcircuit mahogany regeneration processes by selectively removing almost all mahogany seed sources while leaving standing competing vegetation of other species. Listing of mahogany in CITES Appendix II could provide both a mechanism to fill in gaps in information and an incentive to change current practices in favour of silvicultural management to provide for regeneration of this valuable timber species in forests subjected to logging.  相似文献   
2.
A lightweight finger printing stand is described which can be adjusted to the proper printing height. Based upon experience printing over 1,100 subjects, 12 advantages of using the stand are suggested.  相似文献   
3.
This research presents the results of constructing and parameterizing an individual-based model of spatiotemporal dynamics of mixed forest stands. The model facilitates computerized experiments with forest stands having different combinations of species and age structures. These forest stands grow on temperate areas where light is the main system-forming factor that shapes and develops forest ecosystems. The model TEMFORM (TEMperate FORests Model) is developed with few equations and parameters, most of which can be estimated using standard forest inventory data. Parameterization of the model used the growth tables of a set of basic forest-forming species in Far East Russia. Simulation results of the development of the natural single- and mixed-species stands and the effects of different types of disturbances on the stand dynamics and compositions are presented.  相似文献   
4.
白雪  赵成章  康满萍 《生态学报》2021,41(5):1878-1884
根系构型影响根系空间分布和营养吸收效率,反映了植物适应环境胁迫的生存策略。采用标准化主轴估计(Standardized major axis estimation,SMA)的方法,分析了甘肃金塔北海子国家湿地公园3年生和6年生多枝柽柳(Tamarix ramosissima)根系分叉数与分支角度的异速生长关系。结果表明:随着林龄的增长,湿地群落盖度、高度逐渐增加,多枝柽柳种群的盖度、密度、高度和地上生物量以及根系深度、分叉数、比根长、比表面积、各级根系直径随之增加,根系分支角度和根冠比逐渐减小;多枝柽柳根系分叉数与分支角度回归方程的标准主轴斜率逐渐增大(P<0.05),随着林龄的增长,多枝柽柳根系分叉数的增加速度逐渐大于根系分支角度的生长速度,二者在林龄间呈现出差异化的异速生长关系。随着林龄的增长,多枝柽柳根系构型模式由"扩散型"转变为"紧缩型",体现了种群应对生境胁迫和竞争的生态适应机制。  相似文献   
5.
Our study analyzes the growth response (release or suppression) of Norway spruce trees growing along a landslide zone in eastern Czech Republic. A total of one hundred and eighty-six increment cores were extracted from Norway spruce (Picea abies (L.) Karst.) individuals, which were affected by two different disturbances, the Girová landslide in May 2010 and an anthropogenic cut-off in the neighborhood of the landslide later the same year. Growth changes were analysed in three zones that were defined according to the type of effect the disturbance had on the surrounding vegetation. The aims of our study are to (i) detect growth changes in trees that survived the disturbances in 2010, (ii) evaluate the delay time of the growth reaction to the disturbances, (iii) compare how growth changes differed in response to the two different disturbance types (natural landslide vs. anthropogenic harvesting and deforestation), and (iv) investigate spatio-temporal differences in the growth changes. Our results indicate that tree growth changed in response to the altered environmental conditions following the 2010 disturbances. The changes vary depending on the intensity of the disturbance and its effect on the forest stand. Trees in Zone 1 responded with a slight growth release (14.6 % of responding trees), which was strongest after 2013. However, growth suppression (85.4 %) was the dominant reaction in Zone 1; with the majority of trees showing growth suppression in 2014, four years after the events. The strongest and most abrupt growth release (66.1 %) occurred in Zone 2 in 2011, after a one-year delay. Since 2010, we have observed a trend of growth suppression (33.9 %) in this zone. In Zone 3, following a one-year delay, growth release has occurred gradually in about a third of the trees (37.0 %). The majority of trees in this zone have responded with growth suppression (63.0 %) in 2010 and with a three-year delay after 2013. We also found differences in how tree growth responds to anthropogenic and landslide disturbances, as well as spatio-temporal differences related to the extent of post-disturbance changes.  相似文献   
6.
Net photosynthetic fixation of wetland plant communities is confined to the period of the year when the surface soil is not waterlogged and is thus well aerated. In the open‐structured vegetation continuum across freshwater wetlands on sandy soils in subtropical and tropical Australia, the sum of the foliage projective covers (FPCs) of the overstorey and understorey strata remains constant, while that of the overstorey decreases to zero as seasonal waterlogging (and anaerobic conditions) in the surface root systems increases. Density and height of the overstorey trees – of only one or two species – and species richness (number of species per hectare) in the understorey decreases along this waterlogging gradient. Melaleuca paperbark trees, possessing surface roots with cortical aerenchyma, may form a closed‐forest at the edge of the wetland continuum wherever there is a continuous flow of aerated water. As global warming progresses, an increase in air temperature in the atmosphere flowing over and through the wetland continuum during the short period of annual foliage‐growth will affect the combined FPCs of overstorey and understorey strata, as well as the leaf‐specific weights of all leaves throughout the plant community. With a reduction in net photosynthetic fixation, species richness of the plant community will slowly decline.  相似文献   
7.
森林的风/雪灾害研究综述   总被引:39,自引:1,他引:38  
风/雪灾害不仪极大影响木材生产,同时对森林生态系统的稳定性也造成很大影响。森林风/雪危害的主要类型有树干弯曲、干(冠)折、掘根以及后续危害等;其发生主要依赖于气象条件、立地因子、树木和林分特征及其之间的相互作用。其中.林木尖削度(胸径/树高)和林分结构特征(树种、组成、密度等)是控制树木和林分对风/雪荷载抵抗的主要特征量。因此.通过造林、调整林分结构.加强林分管理如间伐、施肥等措施一直是用来减少林木的风/雪灾害的主要措施。另外.林木或林分发生风/雪害的模型分析研究也取得了很大进展,但由于森林风/雪害受诸如地形、天气等多种因素影响、目前所建立的模型系统在实际应用中普适性较芹。通过综述以往研究结果认为:在气象和立地条件难以控制的情况下.通过改变可控因子林分结构来减少森林风/雪害是可行的。因此.研究如何加强森林经营管理,尤其是不同形式的间伐技术和不同处理的造林措施与风/雪灾害发生的关系、如何增加林木和林分抵抗风/雪灾害的能力等是今后该研究领域的重点和难点。与此同时.应加强风/雪灾害危险率评估研究.进而对森林进行风/雪灾害危险率管理;并注重对受灾前后林地内生态效应的研究,以便为灾后的森林经营管理和调控提供坚实的理论依据。  相似文献   
8.
9.
Temperate forest ecosystems have recently been identified as an important net sink in the global carbon budget. The factors responsible for the strength of the sinks and their permanence, however, are less evident. In this paper, we quantify the present carbon sequestration in Thuringian managed coniferous forests. We quantify the effects of indirect human‐induced environmental changes (increasing temperature, increasing atmospheric CO2 concentration and nitrogen fertilization), during the last century using BIOME‐BGC, as well as the legacy effect of the current age‐class distribution (forest inventories and BIOME‐BGC). We focused on coniferous forests because these forests represent a large area of central European forests and detailed forest inventories were available. The model indicates that environmental changes induced an increase in biomass C accumulation for all age classes during the last 20 years (1982–2001). Young and old stands had the highest changes in the biomass C accumulation during this period. During the last century mature stands (older than 80 years) turned from being almost carbon neutral to carbon sinks. In high elevations nitrogen deposition explained most of the increase of net ecosystem production (NEP) of forests. CO2 fertilization was the main factor increasing NEP of forests in the middle and low elevations. According to the model, at present, total biomass C accumulation in coniferous forests of Thuringia was estimated at 1.51 t C ha?1 yr?1 with an averaged annual NEP of 1.42 t C ha?1 yr?1 and total net biome production of 1.03 t C ha?1 yr?1 (accounting for harvest). The annual averaged biomass carbon balance (BCB: biomass accumulation rate‐harvest) was 1.12 t C ha?1 yr?1 (not including soil respiration), and was close to BCB from forest inventories (1.15 t C ha?1 yr?1). Indirect human impact resulted in 33% increase in modeled biomass carbon accumulation in coniferous forests in Thuringia during the last century. From the forest inventory data we estimated the legacy effect of the age‐class distribution to account for 17% of the inventory‐based sink. Isolating the environmental change effects showed that these effects can be large in a long‐term, managed conifer forest.  相似文献   
10.
In the absence of fire in black spruce-feathermoss stands, a thick forest floor layer dominated by bryophytes and sphagnum accumulates. This layer is associated with wet, cool and nutrient-poor soil conditions conducive to the paludification process and pushing the ecosystem towards an unproductive open black spruce forest. The presence of Populus tremuloides in theses stands may halt this process because this species has a high nutrient cycling rate and a litter that represses moss cover. The main hypothesis of this study is that, despite similar abiotic conditions (slope and drainage), the presence of Populus tremuloides in a stand dominated by Picea mariana affects surface soil nutrient availability, total N, pH as well as the decomposition process. The abundance of Populus tremuloides trees was associated with higher exchangeable cations, cationic exchangeable capacity and pH of the forest floor layer on all sites. A decrease in organic matter thickness with increasing aspen presence was also found on all sites, suggesting that this species affects the decomposition process by the quality of its litter as well as by a general improvement of soil physical and chemical properties. The decomposition rate of a standard substrate as well as in vitro potential net nitrogen mineralization were positively related to Populus tremuloides on only one of the three sites, and non-significant on the other sites. Strong immobilization of added nitrogen during incubation was observed on all sites and was not related to aspen, which suggested that in these stands, the soil microbial community is uniformly and strongly nitrogen limited. The zone of influence of Populus tremuloides was evaluated in areas around the soil sampling plot ranging from 3 to 7 m. The results revealed that this zone varies with soil properties. The results suggest that the presence of Populus tremuloides accelerate nutrient cycling, which could affect stand productivity to some extent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号