首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   0篇
  国内免费   5篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   5篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   12篇
  2008年   11篇
  2007年   5篇
  2006年   3篇
  2005年   7篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   10篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
1.
The work of prominent Russian biologist Alexander Gavrilovich Gurwitsch (1874–1954) on the theory of organism development are reviewed. Alexander Gurwitsch introduced the concept of embryonic (morphogenetic, biological, and cellular) field and proposed several revisions of it from 1912 to 1944. Although neither of them can be considered as a final theory of development, his the persistent search for the invariant law that allows the shape (spatial structure) to be proposed for each next developmental stage from the previous shape is of imperishable methodological interest. Alexander Gurwitsch anticipated many ideas of the future theory of self-organization. His theoretical constructions are explicit and experiment-oriented but absolutely not esoteric. They represent a highly important and original contribution to theoretical biology and are an essential step to further development of the ontogenetic theory.  相似文献   
2.
3.
We used x-ray computed tomography to study the elaboration of nest structures in small sand-filled nest boxes by Argentine ant (Linepithema humile) colonies composed of 10, 100, and 1000 workers. The pattern of nest growth was consistent with a process of density-dependent stimulation of excavation, which subsided as nests grew and the density of digging stimuli declined. Thus, nest excavation would be auto-regulating, and final nest size should be adjusted to colony size. We found that excavation rates and final nest sizes increased with colony size, but were not tenfold greater in 1000-worker colonies than in 100-worker colonies. In the largest colonies, the internal surface area scaled allometrically with volume, so that more surface was obtained relative to volume excavated as the nest grew. Although the gross features of Argentine ant nests, such as total size, seem explicable by a simple, self-organized regulatory process, other features of the nest architecture will require further investigation. Received 3 March 2005; revised 26 April 2005; accepted 3 May 2005.  相似文献   
4.
Building resilience in integrated human and nature systems or social–ecological systems (SES) is key for sustainability. Therefore, developing ways of assessing resilience is of practical as well as theoretical significance. We approached the issue by focusing on the local level and using five lagoon systems from various parts of the world for illustration. We used a framework based on four categories of factors for building resilience: (1) learning to live with change and uncertainty; (2) nurturing diversity for reorganization and renewal; (3) combining different kinds of knowledge; and (4) creating opportunity for self-organization. Under each category, the cases generated a number of items for building resilience, and potential surrogates of resilience, that is, variables through which the persistence of SES emerging through change can be assessed. The following factors were robust across all five lagoon SES cases: learning from crisis, responding to change, nurturing ecological memory, monitoring the environment, and building capacity for self-organization and conflict management.  相似文献   
5.
Biological systems in nano-scale, due to the weak electrostatic interactions and structural connectivity therein, are flexible so that they undergo conformational transition subject to thermal fluctuations and external noises. In the presence of barriers, nature utilizes the fluctuations to give rise to self-organization, typically accompanied by conformational transitions. In two opposing membranes with like-charges, the cooperative coupling between the undulation and charge fluctuations give rise to a dynamic instability to spontaneous growth of the in-phase membrane undulation, and thus a great reduction of the energy barrier to fusion. The multivalent counter-ions, the Ca2+ for example, enhance the necessary charge density fluctuation leading to surface charge inversion and overcondensation.  相似文献   
6.
Flocking is a paradigmatic example of collective animal behaviour, where global order emerges out of self-organization. Each individual has a tendency to align its flight direction with those of neighbours, and such a simple form of interaction produces a state of collective motion of the group. When compared with other cases of collective ordering, a crucial feature of animal groups is that the interaction network is not fixed in time, as each individual moves and continuously changes its neighbours. The possibility to exchange neighbours strongly enhances the stability of global ordering and the way information is propagated through the group. Here, we assess the relevance of this mechanism in large flocks of starlings (Sturnus vulgaris). We find that birds move faster than Brownian walkers both with respect to the centre of mass of the flock, and with respect to each other. Moreover, this behaviour is strongly anisotropic with respect to the direction of motion of the flock. We also measure the amount of neighbours reshuffling and find that neighbours change in time exclusively as a consequence of the random fluctuations in the individual motion, so that no specific mechanism to keep one''s neighbours seems to be enforced. On the contrary, our findings suggest that a more complex dynamical process occurs at the border of the flock.  相似文献   
7.
8.
微生物在全球生态系统中占据着重要地位, 其中一个重要的研究领域是微生物与环境(包括无机环境与生物环境)之间的相互作用。在生态相互作用过程中, 微生物常常通过自组织形成特定的空间模式。微生物的空间模式在种群稳定性、群落动态变化以及维持合作行为方面具有重要作用。本文中, 我们梳理了当下对微生物空间自组织及其所形成的空间模式的研究内容, 首先介绍什么是空间自组织, 再根据生态相互作用类型对自组织的空间模式进行描述, 其中重点讨论合作与竞争中的空间模式, 接着关注微生物空间自组织的过程, 最后我们指出空间自组织对整个群体的结构和功能稳定具有重要意义。研究微生物种群间相互作用中的空间模式, 有助于探索维持合作行为的新机制, 进而为微生物共生系统的构建提供新的理解。  相似文献   
9.
10.
It was shown earlier that during collisions bacterial population waves may either penetrate one another or stop. In this communication, the mechanism of these two interaction modes is considered in detail. It is shown on the basis of theoretical and experimental results that this interaction is a graphic example confirming one of the characteristic properties of waves in cross-diffusion systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号