首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
Yan Li  Chunhui Xu  Teng Ma 《Organogenesis》2014,10(2):159-163
Pluripotent stem cells (PSCs) have the ability to spontaneously generate structured tissues in vitro reminiscent of embryonic tissue development. Recently, complex organoids such as cortical tissues, cerebral brain organoids, optical cups, intestinal tissues, and liver buds have been generated from PSCs derived from healthy individuals and patients with genetic diseases, providing powerful tools to understand morphogenesis and disease pathology. This article highlights recent advances in the state-of-art generation of organoids from PSCs, possible signaling pathways and mechanisms involved in organogenesis, and the understanding of extracellular microenvironment. Challenges involved in the organoid generation such as increasing organoid size, enhancing the tissue complexity, and improving functional maturation are also discussed.  相似文献   

3.
《Organogenesis》2013,9(2):159-163
Pluripotent stem cells (PSCs) have the ability to spontaneously generate structured tissues in vitro reminiscent of embryonic tissue development. Recently, complex organoids such as cortical tissues, cerebral brain organoids, optical cups, intestinal tissues, and liver buds have been generated from PSCs derived from healthy individuals and patients with genetic diseases, providing powerful tools to understand morphogenesis and disease pathology. This article highlights recent advances in the state-of-art generation of organoids from PSCs, possible signaling pathways and mechanisms involved in organogenesis, and the understanding of extracellular microenvironment. Challenges involved in the organoid generation such as increasing organoid size, enhancing the tissue complexity, and improving functional maturation are also discussed.  相似文献   

4.
5.
外胚间充质干细胞构建组织工程骨骼肌的应用研究   总被引:1,自引:0,他引:1  
目的:探讨利用大鼠颌突外胚间充质干细胞构建组织工程骨骼肌的可行性,并观察对骨骼肌缺损的修复重建的促进效应。方法:取妊娠E 11.5胎鼠颌突外胚间充质干细胞,纯化后在含5ml/L体积浓度二甲基亚砜的DMEM/F12培养基中诱导分化为骨骼肌样细胞,将细胞种植于BAM膜上培养形成组织工程骨骼肌。将其移植入大鼠骨骼肌缺损模型,手术后14 d观察骨骼肌恢复情况,同期进行组织学及免疫组化染色鉴定。结果:经诱导后外胚间充质干细胞可向骨骼肌样细胞转化,构建的组织工程骨骼肌可加速缺损的修复重建,组织学染色显示外胚间充质干细胞具有正常骨骼肌的组织形态,可表达成肌相关蛋白MyOD。结论:诱导后的外胚间充质干细胞可作为种子细胞构建组织工程骨骼肌,本实验为临床肌肉的缺损修复奠定了理论基础。  相似文献   

6.
随着细胞与组织工程的迅猛发展,能够促进细胞黏附、生长和分化的生物材料基质支架的研究日益重要。具有生物相容性且含水量超过99%的自组装肽水凝胶因其很好地符合理想的生物材料基质支架标准而备受重视。这类自我互补的两亲寡肽含50%的带电残基,并且以交替的离子亲水性和不带电的氨基酸残基周期性重复为特征;在其寡肽的氨基末端可用直接固相合成法修饰几个短序列生物活性模体进行功能化,用以促进不同细胞的黏附生长和靶向定位。现对自组装肽水凝胶的结构特征、自组装机制、对细胞黏附生长的影响以及未来自组装肽生物材料设计的目标进行综述.  相似文献   

7.
3D organotypic cultures of epithelial cells on a matrix embedded with mesenchymal cells are widely used to study epithelial cell differentiation and invasion. Rat tail type I collagen and/or matrix derived from Engelbreth-Holm-Swarm mouse sarcoma cells have been traditionally employed as the substrates to model the matrix or stromal microenvironment into which mesenchymal cells (usually fibroblasts) are populated. Although experiments using such matrices are very informative, it can be argued that due to an overriding presence of a single protein (such as in type I Collagen) or a high content of basement membrane components and growth factors (such as in matrix derived from mouse sarcoma cells), these substrates do not best reflect the contribution to matrix composition made by the stromal cells themselves. To study native matrices produced by primary dermal fibroblasts isolated from patients with a tumor prone, genetic blistering disorder (recessive dystrophic epidermolysis bullosa), we have adapted an existing native matrix protocol to study tumor cell invasion. Fibroblasts are induced to produce their own matrix over a prolonged period in culture. This native matrix is then detached from the culture dish and epithelial cells are seeded onto it before the entire coculture is raised to the air-liquid interface. Cellular differentiation and/or invasion can then be assessed over time. This technique provides the ability to assess epithelial-mesenchymal cell interactions in a 3D setting without the need for a synthetic or foreign matrix with the only disadvantage being the prolonged period of time required to produce the native matrix. Here we describe the application of this technique to assess the ability of a single molecule expressed by fibroblasts, type VII collagen, to inhibit tumor cell invasion.  相似文献   

8.
9.
干细胞联合生物支架材料体外构建功能性组织与器官,成为当前组织再生研究的重要策略,而探求具有良好生物相容性的支架材料是其关键.本研究采用扫描电镜、噻唑蓝(MTT)法、荧光显微染色等方法检测小鼠诱导多能干细胞(murine induced pluripotent stem cells, miPSCs)在聚己内酯(poly ε-caprolactone, PCL)静电纺丝纳米纤维支架上的粘附、增殖等生物学特性,探究聚己内酯纳米纤维支架与miPSCs的生物相容性. 结果显示,miPSC在PCL纳米纤维支架上具有良好粘附性并呈集落样生长,其增殖能力及干性标记物(Oct4-GFP+)的表达均不亚于标准对照组;扫描电镜显示,miPSC在PCL纳米纤维支架材料上呈现出绒毛状突起的表面结构.上述结果表明,PCL纳米纤维支架可促进miPSCs的粘附、自我增殖以及干性维持,两者具有良好的生物相容性,为下一步联合生物支架材料与干细胞构建功能性组织奠定了基础.  相似文献   

10.
11.
12.
13.
This protocol details the generation of acellular, yet biofunctional, renal extracellular matrix (ECM) scaffolds that are useful as small-scale model substrates for organ-scale tissue development. Sprague Dawley rat kidneys are cannulated by inserting a catheter into the renal artery and perfused with a series of low-concentration detergents (Triton X-100 and sodium dodecyl sulfate (SDS)) over 26 hr to derive intact, whole-kidney scaffolds with intact perfusable vasculature, glomeruli, and renal tubules. Following decellularization, the renal scaffold is placed inside a custom-designed perfusion bioreactor vessel, and the catheterized renal artery is connected to a perfusion circuit consisting of: a peristaltic pump; tubing; and optional probes for pH, dissolved oxygen, and pressure. After sterilizing the scaffold with peracetic acid and ethanol, and balancing the pH (7.4), the kidney scaffold is prepared for seeding via perfusion of culture medium within a large-capacity incubator maintained at 37 °C and 5% CO2. Forty million renal cortical tubular epithelial (RCTE) cells are injected through the renal artery, and rapidly perfused through the scaffold under high flow (25 ml/min) and pressure (~230 mmHg) for 15 min before reducing the flow to a physiological rate (4 ml/min). RCTE cells primarily populate the tubular ECM niche within the renal cortex, proliferate, and form tubular epithelial structures over seven days of perfusion culture. A 44 µM resazurin solution in culture medium is perfused through the kidney for 1 hr during medium exchanges to provide a fluorometric, redox-based metabolic assessment of cell viability and proliferation during tubulogenesis. The kidney perfusion bioreactor permits non-invasive sampling of medium for biochemical assessment, and multiple inlet ports allow alternative retrograde seeding through the renal vein or ureter. These protocols can be used to recellularize kidney scaffolds with a variety of cell types, including vascular endothelial, tubular epithelial, and stromal fibroblasts, for rapid evaluation within this system.  相似文献   

14.
Human cardiac tissue engineering can fundamentally impact therapeutic discovery through the development of new species-specific screening systems that replicate the biofidelity of three-dimensional native human myocardium, while also enabling a controlled level of biological complexity, and allowing non-destructive longitudinal monitoring of tissue contractile function. Initially, human engineered cardiac tissues (hECT) were created using the entire cell population obtained from directed differentiation of human pluripotent stem cells, which typically yielded less than 50% cardiomyocytes. However, to create reliable predictive models of human myocardium, and to elucidate mechanisms of heterocellular interaction, it is essential to accurately control the biological composition in engineered tissues. To address this limitation, we utilize live cell sorting for the cardiac surface marker SIRPα and the fibroblast marker CD90 to create tissues containing a 3:1 ratio of these cell types, respectively, that are then mixed together and added to a collagen-based matrix solution. Resulting hECTs are, thus, completely defined in both their cellular and extracellular matrix composition.Here we describe the construction of defined hECTs as a model system to understand mechanisms of cell-cell interactions in cell therapies, using an example of human bone marrow-derived mesenchymal stem cells (hMSC) that are currently being used in human clinical trials. The defined tissue composition is imperative to understand how the hMSCs may be interacting with the endogenous cardiac cell types to enhance tissue function. A bioreactor system is also described that simultaneously cultures six hECTs in parallel, permitting more efficient use of the cells after sorting.  相似文献   

15.
The chemokine receptor CXCR2 and its ligands are implicated in the progression of tumours and various inflammatory diseases. Activation of the CXCLs/CXCR2 axis activates multiple signalling pathways, including the PI3K, p38/ERK, and JAK pathways, and regulates cell survival and migration. The CXCLs/CXCR2 axis plays a vital role in the tumour microenvironment and in recruiting neutrophils to inflammatory sites. Extensive infiltration of neutrophils during chronic inflammation is one of the most important pathogenic factors in various inflammatory diseases. Chronic inflammation is considered to be closely correlated with initiation of cancer. In addition, immunosuppressive effects of myeloid-derived suppressor cells (MDSCs) against T cells attenuate the anti-tumour effects of T cells and promote tumour invasion and metastasis. Over the last several decades, many therapeutic strategies targeting CXCR2 have shown promising results and entered clinical trials. In this review, we focus on the features and functions of the CXCLs/CXCR2 axis and highlight its role in cancer and inflammatory diseases. We also discuss its potential use in targeted therapies.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号