首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   13篇
  国内免费   93篇
  2024年   1篇
  2023年   12篇
  2022年   11篇
  2021年   15篇
  2020年   13篇
  2019年   21篇
  2018年   15篇
  2017年   19篇
  2016年   21篇
  2015年   16篇
  2014年   13篇
  2013年   14篇
  2012年   19篇
  2011年   16篇
  2010年   5篇
  2009年   8篇
  2008年   17篇
  2007年   16篇
  2006年   14篇
  2005年   13篇
  2004年   11篇
  2003年   10篇
  2002年   15篇
  2001年   6篇
  2000年   12篇
  1999年   14篇
  1998年   7篇
  1997年   4篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   1篇
排序方式: 共有383条查询结果,搜索用时 18 毫秒
1.
In this article the conditions that govern surfactant‐enhanced emulsification and mobilization of petroleum hydrocarbons in soil are reviewed. The effect of soil properties, groundwater constituents, and differing surfactant solutions on the emulsification process is discussed. A constant head soil flushing apparatus used to characterize surfactant‐enhanced mobilization of m‐xylene is described. Data showing the effect of surfactant‐enhanced mobilization on m‐xylene removal efficiency in washed sand is presented. Flushing solutions were used at concentrations from below to well above the critical micelle concentration (CMC) of the surfactants used. Removal efficiencies are shown to vary with surfactant concentration and with surfactant type. Flushing solutions of anionic, nonionic, and anionic/nonionic surfactant mixtures were evaluated.  相似文献   
2.
Leppard  Gary G.  Droppo  Ian G. 《Hydrobiologia》2003,494(1-3):313-318
Remediation of contaminated sediments requires detailed characterizations of the speciation of the toxic substances and their transformations with regard to time and spatial distribution. While many approaches exist to address dissolved species of toxicants, there is a need to characterize sediments per se in terms of materials or particles which bind toxicants and modulate their bioavailability and rate of burial. Such specific information can be achieved through the correlative use of analytical microscopies, applied directly to native aquatic materials and used in conjunction with novel particle isolation methods and standard techniques of analytical chemistry. Such sedimentary `materials' are dominated by clays and other colloidal minerals, microorganisms, humic substances, organic debris, iron and manganese oxide coatings and extracellular polymeric substances. By using new technology to (1) identify particles and their relative abundances, (2) examine specific toxicant/particle associations at the scale of individual abundant particles, and (3) follow transformations over time, we produce information more insightful than was obtainable previously. Such knowledge will assist in determining which remediation technologies would be best for a given contaminated sediment (i.e. `intrinsic remediation' or dredging/disposal).  相似文献   
3.
4.
The life-cycle greenhouse gaseous emissions and primary exergy resources consumption associated with a horizontal subsurface flow constructed wetland (HSSF) were investigated. The subject of study was a wetland for municipal wastewater treatment with a 700-person-equivalent capacity. The effects of two types of emergent aquatic macrophytes (Phragmites australis and Schoenoplectus californicus) and seasonality on greenhouse gas (GHG) gas emissions, the environmental remediation cost (ERC) and the specific environmental remediation cost (SERC) were assessed. The results indicate that GHG emissions per capita (12–22 kgCO2eq/p.e/yr) and primary exergy resources consumed (24–27 MJ/m3) for the HSSF are lower than those of a conventional wastewater treatment plant (67.9 kgCO2eq/p.e/yr and 96 MJ/m3). The SERC varied between 176 and 216 MJ/kg biological oxygen demand (BOD5) removal, which should be further reduced by 20% for an improved BOD5 removal efficiency above 90%. The low organic matter removal efficiency is associated with a high organic load and low bacterial development. Seasonality has a marked effect on the organic removal efficiency and the SERC, but the macrophyte species does not.  相似文献   
5.
An engineered microbial biofilm barrier capable of reducing aquifer hydraulic conductivity while simultaneously biodegrading nitrate has been developed and tested at a field-relevant scale. The 22-month demonstration project was conducted at the MSE Technology Applications Inc. test facility in Butte, Montana, which consisted of a 130 ft wide, 180 ft long, 21 ft deep, polyvinylchloride (PVC)-lined test cell, with an initial hydraulic conductivity of 4.2 × 10-2 cm/s. A flow field was established across the test cell by injecting water upgradient while simultaneously pumping from an effluent well located approximately 82 ft down gradient. A 30 ft wide biofilm barrier was developed along the centerline of the test cell by injecting a starved bacterial inoculum of Pseudomonas fluorescens strain CPC211a, followed by injection of a growth nutrient mixture composed of molasses, nitrate, and other additives. A 99% reduction of average hydraulic conductivity across the barrier was accomplished after three months of weekly or bi-weekly injections of growth nutrient. Reduced hydraulic conductivity was maintained by additional nutrient injections at intervals ranging from three to ten months. After the barrier was in place, a sustained concentration of 100 mg/l nitrate nitrogen, along with a 100 mg/l concentration of conservative (chloride) tracer, was added to the test cell influent over a six-month period. At the test cell effluent the concentration of chloride increased to about 80 mg/l while the effluent nitrate concentration varied between 0.0 and 6.4 mg/l.  相似文献   
6.
石油污染土壤植物-微生物修复研究进展   总被引:34,自引:0,他引:34  
依据国内外近10年来有关石油污染土壤生物修复研究的成果,综合阐述了石油污染土壤的植物修复、微生物修复及植物-微生物联合修复方法研究,重点讨论植物-微生物联合作用,主要包括植物根际微生物、根分泌物以及菌根对石油污染物降解的影响,提出了污染土壤原位修复中需要重视的问题.  相似文献   
7.
Ten years of restoration work at 200 sites within Kosciuszko National Park – sites damaged during the construction of Australia's most iconic hydroelectric scheme – is showing substantial progress and is contributing to the protection of the park's internationally significant ecosystems.  相似文献   
8.
Petroleum pollution is a global problem that requires effective and accessible remediation strategies that takes ecosystem functioning into serious consideration. Bioremediation can be an effective tool to address the challenge. In this study, we used a mesocosm experiment to evaluate the effects of locally sourced and community produced biochar and compost amendments on diesel-contaminated soil. At the end of the 90-day experiment, we quantified the effects of the amendments on total petroleum hydrocarbons (C9-C40) (TPH) and soil pH, organic matter, aggregate stability, soil respiration, extractable phosphorus, extractable potassium, and micronutrients (Mg, Fe, Mn, and Zn). We observed significantly higher TPH degradation in compost-amended soils than in controls and soils amended with biochar. We propose that the addition of compost improved TPH biodegradation by augmenting soil nutrient content and microbial activity. Our results suggest that community-accessible compost can improve TPH biodegradation, and that implementation is possible at the community level.  相似文献   
9.
Abstract

This study examined how different nitrogen (N) forms and application levels promote plant growth and assist in manganese (Mn) remediation of Polygonum pubescens Blume (P. pubescens) cultured in soil with a high Mn level. The effects of ammonium chloride (a) and urea (u), at three application levels (10, 20, and 30?mg L?1 N) and control (no N addition, CK) on the growth, Mn accumulation, and enzymatic anti-oxidative defenses of P. pubescens were examined. In general, both ammonium-N and urea-N promoted the plant mass and height of P. pubescens. The total Mn amount of roots, stems, and leaves in N treatments were higher (p?<?0.05) than that of CK. The ammonium-N treatments showed greater plant biomass and Mn accumulation compared to the urea-N ones. In general, the accumulations of Mn, Cr, Zn, and Cu were significantly lower (p?<?0.05) in the N fertilizer treatment than those in the control; while the accumulations of Pb were higher (p?<?0.05) in P. pubescens across all N fertilizer treatments than those in the control. The N addition decreased the contents of O2? and H2O2 in the leaves of P. pubescens, while increasing the activities of enzymatic anti-oxidative defenses.  相似文献   
10.
Abstract

Cadmium (Cd) contamination is one of the most serious global environmental problems, and phytoremediation, which uses Cd-accumulator plants, is potentially one of the sustainable solutions. Pot experiments with natural and Cd-amended soils were conducted to investigate the accumulation of heavy metals in 10 leading cultivars of tobacco in China. The extraction ability and profiles of Cd accumulation among plant organs were also analyzed. The tobacco roots accumulated cobalt, nickel, and Cd, while the leaf highly bioaccumulated Cd and lowly accumulated zinc, selenium and mercury. The transport from the tobacco stem to the leaf plays a critical role in the accumulation of these elements. The ratios of Cd concentration in the leaves at lower, middle and upper positions were comparatively stable. The high Cd-extracting cultivars were “Hongda”, “NC89” and “Zhongyan 100” when grown in normal soils, “CuiBi 1” and “Hongda” in moderately contaminated soils, and “YuYan 87”, “LongJiang 851” and “K326” in severely contaminated soils. Tobacco leaves could accumulate about 80% of the total Cd extracted from the soil by the plant. Considering the Cd-extraction limitations exhibited by leading tobacco cultivars, screening of germplasm resources for high or low levels of Cd-accumulation is still an important target for the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号