首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   29篇
  国内免费   10篇
  2023年   1篇
  2021年   2篇
  2020年   6篇
  2019年   12篇
  2018年   5篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   9篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
排序方式: 共有125条查询结果,搜索用时 62 毫秒
1.
Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose‐grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate‐friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long‐term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings—in particular, longer timeframes and high DFs—bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas‐based electricity generation, natural succession is competitive or even superior for timeframes of 20–50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low‐cost natural climate solution that has many co‐benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time.  相似文献   
2.
Plantations are frequently established on abandoned pasture lands to speed forest recovery. This strategy requires matching a tree species mix with the prevailing microenvironmental conditions. In four degraded pastures of the Mexican Lacandon rainforest, we planted 2,400 trees of 6 species (Guazuma ulmifolia, Inga vera, Ochroma pyramidale, Trichospermum mexicanum, Bursera simaruba, and Spondias mombin) to (1) test survival, initial growth, and establishment costs; (2) evaluate whether vegetative cuttings outperform direct seeding or transplants of nursery‐raised seedlings; (3) determine tree response to herbaceous dominance and soil compaction; and (4) scrutinize the results' consistency across sites and sampling scales of tree–microenvironment interactions (individual tree vs. averaged plot responses). After 2 years, overall survival and growth rates were high for 2 of 3 nursery‐raised species. Contrary to expectations, all seedlings outperformed the cuttings while direct seeding resulted in a cost‐effective option of intermediate efficacy. The impact of soil resistance to root penetration on tree biomass accumulation was species dependent while bulk density was not relevant. Soil‐covering, herbaceous vegetation accelerated growth in 3 of 4 tested species during the dry season. At this initial stage of forest restoration in abandoned pastures, Guazuma and Trichospermum were the most restoration‐effective species. Costs can be reduced by using direct‐seeding Inga and avoiding weeding during the dry season. Finally, our results demonstrate how species selection trials can be misleading due to site variations in tree response and to sampling scales that fail to account for small‐scale environmental heterogeneity. We recommend ways to improve the design of restoration trials.  相似文献   
3.
Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio‐economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest area, we homogenized statistics at the provincial level for ad 1700–2010 to identify forest transition years and forest trends. We contrast our reconstruction with the KK11 and HYDE 3.1 land change scenarios, and use all three datasets to drive the LPJ dynamic global vegetation model to calculate carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable or continuously declining forest area. Our data suggest extensive deforestation in European Russia already prior to ad 1700, and even greater deforestation in the 18th and 19th centuries than in the KK11 and HYDE scenarios. Based on our reconstruction, cumulative carbon emissions from deforestation were greater before 1700 (60 Pg C) than thereafter (29 Pg C). Summed over our entire study area, forest transitions led to a modest uptake in carbon over recent decades, with our dataset showing the smallest effect (<5.5 Pg C) and a more heterogeneous pattern of source and sink regions. This suggests substantial sequestration potential in regrowing forests of the region, a trend that may be amplified through ongoing land abandonment, climate change, and CO2 fertilization.  相似文献   
4.
Reforestation of formerly cultivated land is widely understood to accumulate above‐ and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above‐ and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0–7.5 cm) were offset by significant SOM losses in subsoils (35–60 cm). Here, we extended the observation period in this long‐term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light‐fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay‐sized particles. Isotopic signatures showed relatively large accumulations of forest‐derived carbon in surface soils, and little to no accumulation of forest‐derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long‐term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long‐term soil data deeper than 30 cm.  相似文献   
5.
Over the past 150 years, Brazil has played a pioneering role in developing environmental policies and pursuing forest conservation and ecological restoration of degraded ecosystems. In particular, the Brazilian Forest Act, first drafted in 1934, has been fundamental in reducing deforestation and engaging private land owners in forest restoration initiatives. At the time of writing (December 2010), however, a proposal for major revision of the Brazilian Forest Act is under intense debate in the National Assembly, and we are deeply concerned about the outcome. On the basis of the analysis of detailed vegetation and hydrographic maps, we estimate that the proposed changes may reduce the total amount of potential areas for restoration in the Atlantic Forest by approximately 6 million hectares. As a radically different policy model, we present the Atlantic Forest Restoration Pact (AFRP), which is a group of more than 160 members that represents one of the most important and ambitious ecological restoration programs in the world. The AFRP aims to restore 15 million hectares of degraded lands in the Brazilian Atlantic Forest biome by 2050 and increase the current forest cover of the biome from 17% to at least 30%. We argue that not only should Brazilian lawmakers refrain from revising the existing Forest Law, but also greatly step up investments in the science, business, and practice of ecological restoration throughout the country, including the Atlantic Forest. The AFRP provides a template that could be adapted to other forest biomes in Brazil and to other megadiversity countries around the world.  相似文献   
6.
Methanotrophs use methane (CH4) as a carbon source. They are particularly active in temperate forest soils. However, the rate of change of CH4 oxidation in soil with afforestation or reforestation is poorly understood. Here, soil CH4 oxidation was examined in New Zealand volcanic soils under regenerating native forests following burning, and in a mature native forest. Results were compared with data for pasture to pine land-use change at nearby sites. We show that following soil disturbance, as little as 47 years may be needed for development of a stable methanotrophic community similar to that in the undisturbed native forest soil. Corresponding soil CH4-oxidation rates in the regenerating forest soil have the potential to reach those of the mature forest, but climo-edaphic fators appear limiting. The observed changes in CH4-oxidation rate were directly linked to a prior shift in methanotrophic communities, which suggests microbial control of the terrestrial CH4 flux and identifies the need to account for this response to afforestation and reforestation in global prediction of CH4 emission.  相似文献   
7.
Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of ?2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (?0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding ?5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.  相似文献   
8.
流域季节性径流变化反映了年内水资源的动态特征。在以森林为主的流域中,森林变化和气候变异被普遍认为是影响流域水文过程的两大驱动因素。因此在全球气候变化背景下,研究流域森林恢复和气候变异对流域季节性径流的影响,可为协调区域碳-水关系和制订可持续的森林经营管理策略提供参考。选择鄱阳湖流域上游的平江流域为研究对象,根据流域历史森林覆盖率变化情况,将研究期划分为参考期(1961-1985)和森林恢复期(1986-2006),采用Mann-Kendall趋势分析研究流域长时期水文气象数据是否存在显著变化趋势。同时引入月干旱指数(潜在蒸散发和有效降雨的比率),将一年定义为能量限制季(1-6月)和水分限制季(7-12月),结合扩展的Budyko模型定量分析平江流域森林恢复和气候变异对季节性径流的相对贡献。在本研究流域整个研究期内(1961-2006),通过Mann-Kendall趋势分析发现,研究流域水分限制季径流呈现显著增加趋势,而能量限制季水文和气候变量变化趋势均不显著。其次,相较于参考期,流域森林恢复使能量限制季径流降低了11.71 mm/a (24.40%),使水分限制季径流增加了12.27 mm/a (17.23%)。同时,气候变异导致能量限制季径流减少了36.28 mm/a (75.60%),而使水分限制季径流增加了58.94 mm/a (82.77%)。上述研究结果表明,森林恢复对径流影响具有累积效应。森林恢复对季节性径流具有积极的调节作用,同时季节性径流对森林恢复的响应存在时间差,而且森林恢复对径流的影响在能量限制季和水分限制季具有相互抵消的作用,气候变异与森林恢复的影响效应类似。此外,本研究也证实,平江流域季节性径流变化主要是受气候变化主导,但森林恢复对季节性径流的贡献也不容忽视。  相似文献   
9.
Reforestation has been suggested as a strategy to control Saccharum spontaneum, an invasive grass that impedes regeneration in disturbed areas of the Panama Canal Watershed (PCW). In this study, the effects of different intensities of herbicide application and mechanical cleanings on the growth and mortality of Terminalia amazonia and Tectona grandis saplings were evaluated in S. spontaneum grasslands within the PCW. Both species exhibited greater height, basal diameter, wood volume index, wider crown diameters, deeper live crowns, and lower mortality with increasing intensity of mechanical cleanings and herbicide application. Height and competition of S. spontaneum correlated negatively with intensity of mechanical cleanings and herbicide application. Grass control costs did not differ between tree species but did increase significantly with intensity of mechanical cleanings and herbicide application. We recommend fire suppression, annual herbicide application, and at least four mechanical cleanings per year in Tec. grandis plantations during the first 3 years of plantation establishment. Given the slower initial growth and mortality patterns of Ter. amazonia, aggressive grass control treatments should be continued until individuals are sufficiently large to effectively shade S. spontaneum. Results from this study suggest that reforestation with commercial timber species can rapidly establish and control S. spontaneum growth in the PCW. Reforestation of areas already invaded or at risk of being invaded by S. spontaneum appears to be a viable strategy to reduce its abundance and subsequent negative ecological effects in the PCW.  相似文献   
10.
Seedling establishment in harsh environments is often enhanced by the proximity of adult shrubs. This information has been used in restoration work by placing seedlings of species being restored under the canopy of some shrubs. However, monitoring this process is often restricted to a single species, and comparisons with practices that protect planted seedlings against harsh conditions are scant. Similarly, few studies have supplied seedlings with water in the summer to observe the effects of water availability on the interaction. We compared sapling survival of three woody species (Olea europaea, Pistacia lentiscus, and Ziziphus lotus) under the leguminous shrub Retama sphaerocarpa and in gaps covered with piled branches that mimicked a shrub canopy. After 3 years, survival of saplings planted under Retama differed depending on species identity and water supply. Survival of Olea saplings placed under Retama shrubs was twice that under piled branches if not watered (35 ± 8 vs. 17 ± 2 %, respectively), whereas survival of saplings under Retama, if watered, was less (48 ± 11 vs. 68 ± 8%, respectively). Retama shrubs had a negative effect on Ziziphus; most saplings died under its canopy, whereas survival in piled branches ranged 10–54%. Pistacia was neither facilitated nor outcompeted by Retama. Facilitation of Olea by Retama shrubs was more apparent under dry conditions where watering increased competition and decreased facilitation. Overall, we conclude that Retama shrubs can help dry land restoration to a greater extent than artificial shade for Olea when not watered. The critical role played by water supply in determining nursing success rates warrants further study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号