首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   35篇
  国内免费   4篇
  2023年   8篇
  2021年   4篇
  2020年   22篇
  2019年   20篇
  2018年   12篇
  2017年   11篇
  2016年   8篇
  2015年   13篇
  2014年   16篇
  2013年   21篇
  2012年   8篇
  2011年   18篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   12篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
1.
2.
The synchronous behaviour of interacting communities is studied in this paper. Each community is described by a tritrophic food chain model, and the communities interact through a network with arbitrary topology, composed of patches and migration corridors. The analysis of the local synchronization properties (via the master stability function approach) shows that, if only one species can migrate, the dispersal of the consumer (i.e., the intermediate trophic level) is the most effective mechanism for promoting synchronization. When analysing the effects of the variations of demographic parameters, it is found that factors that stabilize the single community also tend to favour synchronization. Global synchronization is finally analysed by means of the connection graph method, yielding a lower bound on the value of the dispersion rate that guarantees the synchronization of the metacommunity for a given network topology.  相似文献   
3.
4.
Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions.  相似文献   
5.
6.
Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β‐diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species‐sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity.  相似文献   
7.
8.
Bacteria inhabiting boreal freshwaters are part of metacommunities where local assemblages are often linked by the flow of water in the landscape, yet the resulting spatial structure and the boundaries of the network metacommunity have never been explored. Here, we reconstruct the spatial structure of the bacterial metacommunity in a complex boreal aquatic network by determining the taxonomic composition of bacterial communities along the entire terrestrial/aquatic continuum, including soil and soilwaters, headwater streams, large rivers and lakes. We show that the network metacommunity has a directional spatial structure driven by a common terrestrial origin of aquatic communities, which are numerically dominated by taxa recruited from soils. Local community assembly is driven by variations along the hydrological continuum in the balance between mass effects and species sorting of terrestrial taxa, and seems further influenced by priority effects related to the spatial sequence of entry of soil bacteria into the network.  相似文献   
9.
Seafloor integrity is threatened by disturbances owing to human activities. The capacity of the system to recover from disturbances, as well as maintain resilience and function, depends on dispersal. In soft-sediment systems, dispersal continues after larval settlement, but there are very few measurements of how far the post-settlers disperse in nature. Spatial scales of post-settlement dispersal are, however, likely to be similar to pelagic larval dispersal because of continued, frequent, small-scale dispersal over longer periods. The consequences of this dispersal may be more important for the maintenance of biodiversity and metacommunity dynamics than is pelagic larval dispersal, because of the greater size and competency of the dispersers. We argue that an increased empirical understanding of post-settlement dispersal processes is key for predicting how benthic communities will respond to local disturbances and shrinking regional species pools, with implications for monitoring, managing and conserving biodiversity.  相似文献   
10.
1. The notion that the spatial configuration of habitat patches has to be taken into account to understand the structure and dynamics of ecological communities is the starting point of metacommunity ecology. One way to assess metacommunity structure is to investigate the relative importance of environmental heterogeneity and spatial structure in explaining community patterns over different spatial and temporal scales. 2. We studied metacommunity structure of large branchiopod assemblages characteristic of subtropical temporary pans in SE Zimbabwe using two community data sets: a community snapshot and a long‐term data set covering 4 years. We assessed the relative importance of environmental heterogeneity and dispersal (inferred from patch occupancy patterns) as drivers of community structure. Furthermore, we contrasted metacommunity patterns in pans that occasionally connect to the river (floodplain pans) and pans that lack such connections altogether (endorheic pans) using redundancy models. 3. Echoes of species sorting and dispersal limitation emerge from our data set, suggesting that both local and regional processes contribute to explaining branchiopod assemblages in this system. Relative importance of local and regional factors depended on the type of data set considered. Overall, habitat characteristics that vary in time, such as conductivity, hydroperiod and vegetation cover, best explained the instantaneous species composition observed during a snapshot sampling while long‐term species composition appeared to be linked to more constant intrinsic habitat properties such as river connectivity and spatial location.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号