首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   32篇
  国内免费   4篇
  2023年   8篇
  2021年   4篇
  2020年   22篇
  2019年   20篇
  2018年   12篇
  2017年   11篇
  2016年   8篇
  2015年   13篇
  2014年   16篇
  2013年   21篇
  2012年   8篇
  2011年   18篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   12篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
排序方式: 共有213条查询结果,搜索用时 187 毫秒
91.
Aim The aim of this study is to answer the questions: (1) do small organisms disperse farther than large, or vice versa; and (2) does the observed pattern differ for passive and active dispersers? These questions are central to several themes in biogeography (including microbial biogeography), macroecology, metacommunity ecology and conservation biology. Location The meta‐analysis was conducted using published data collected worldwide. Methods We collected and analysed 795 data values in the peer‐reviewed literature for direct observations of both maximal dispersal distance and mass of the dispersing organisms (e.g. seeds, not trees). Analysed taxa ranged in size from bacteria to whales. We applied macroecology analyses based on null models (using Monte Carlo randomizations) to test patterns relative to specific hypotheses. Results Collected dispersal distance and mass data spanned 9 and 21 orders of magnitude, respectively. Active dispersers dispersed significantly farther (P < 0.001) and were significantly greater in mass (P < 0.001) than passive dispersers. Overall, size matters: larger active dispersers attained greater maximum observed dispersal distances than smaller active dispersers. In contrast, passive‐disperser distances were random with respect to propagule mass, but not uniformly random, in part due to sparse data available for tiny propagules. Conclusions Size is important to maximal dispersal distance for active dispersers, but not for passive dispersers. Claims that microbes disperse widely cannot be tested by current data based on direct observations of dispersal: indirect approaches will need to be applied. Distance–mass relationships should contribute to a resolution of neutral and niche‐based metacommunity theories by helping scale expectations for dispersal limitation. Also, distance–mass relationships should inform analyses of latitudinal species richness and conservation biology topics such as fragmentation, umbrella species and taxonomic homogenization.  相似文献   
92.
Seed dispersal limitation, which can be exacerbated by a number of anthropogenic causes, can result in local communities having fewer species than they might potentially support, representing a potential diversity deficit. The link between processes that shape natural variation in diversity, such as dispersal limitation, and the consequent effects on productivity is less well known. Here, we synthesised data from 12 seed addition experiments in grassland communities to examine the influence of reducing seed dispersal limitation (from 1 to 60 species added across experiments) on species richness and productivity. For every 10 species of seed added, we found that species richness increased by about two species. However, the increase in species richness by overcoming seed limitation did not lead to a concomitant increase in above‐ground biomass production. This highlights the need to consider the relationship between biodiversity and ecosystem functioning in a pluralistic way that considers both the processes that shape diversity and productivity simultaneously in naturally assembled communities.  相似文献   
93.
Land use change and biological invasions collectively threaten biodiversity. Yet, few studies have addressed how altering the landscape structure and nutrient supply can promote biological invasions and particularly invasive spread (the spread of an invader from the place of introduction), or asked whether and how these factors interact with biotic interactions and invader properties. We here bridge this knowledge gap by providing a holistic network-based approach. Our approach combines a trophic network model with a spatial network model allowing us to test which combinations of abiotic and biotic factors can facilitate invasions and in particular invasive spread in food webs. We numerically simulated 6300 single-species invasions in clustered and random landscapes at different levels of nutrient supply. In total, our simulation experiment yielded 69% successful invasions – 71% in clustered landscapes and 66% in random landscapes, with the proportion of successful invasions increasing with nutrient supply. However, invasive spread was generally higher in random than in clustered landscapes. The latter can facilitate invasive spread within a habitat cluster, but prevent invasive spread between clusters. Low nutrient levels generally prevented the establishment of invasive species and their subsequent spread. However, successful invaders could have more severe impacts as they contribute more to total biomass density and species richness under such conditions. Good dispersal abilities drive the broad-scale spread of invasive species in fragmented landscapes. Our approach makes an important contribution towards a better understanding of what combination of landscape and invader properties can facilitate or prevent invasive spread in natural ecosystems. This should allow ecologists to more effectively predict and manage biological invasions.  相似文献   
94.
While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams.  相似文献   
95.
96.
Aim Robust and reliable predictions of the effects of climate change on biodiversity are required in formulating conservation and management strategies that best retain biodiversity into the future. Significant challenges in modelling climate change impacts arise from limitations in our current knowledge of biodiversity. Community‐level modelling can complement species‐level approaches in overcoming these limitations and predicting climate change impacts on biodiversity as a whole. However, the community‐level approaches applied to date have been largely correlative, ignoring the key processes that influence change in biodiversity over space and time. Here, we suggest that the development of new ‘semi‐mechanistic’ community‐level models would substantially increase our capacity to predict climate change impacts on biodiversity. Location Global. Methods Drawing on an expansive review of biodiversity modelling approaches and recent advances in semi‐mechanistic modelling at the species level, we outline the main elements of a new semi‐mechanistic community‐level modelling approach. Results Our quantitative review revealed a sharp divide between mechanistic and non‐mechanistic biodiversity modelling approaches, with very few semi‐mechanistic models developed to date. Main conclusions We suggest that the conceptual framework presented here for combining mechanistic and non‐mechanistic community‐level approaches offers a promising means of incorporating key processes into predictions of climate change impacts on biodiversity whilst working within the limits of our current knowledge.  相似文献   
97.
Gouhier TC  Menge BA  Hacker SD 《Ecology letters》2011,14(12):1201-1210
Although positive species interactions are ubiquitous in nature, theory has generally focused on the role of negative interactions to explain patterns of species diversity. Here, we incorporate recruitment facilitation, a positive interaction prevalent in marine and terrestrial systems, into a metacommunity framework to assess how the interplay between colonisation, competition and facilitation mediates coexistence. We show that when subordinate species facilitate the recruitment of dominant species, multi-species metacommunities can persist stably even if the colonisation rate of the dominant species is greater than that of the subordinate species. In addition, recruitment facilitation can buffer population growth from changes in colonisation rates, and thus explain the paradoxical mismatch between patterns of abundance and recruitment in marine systems. Overall, our results demonstrate that recruitment facilitation can have profound effects on the assembly, dissolution and regulation of metacommunities by mediating the relative influence of local and regional processes on population abundance and species diversity.  相似文献   
98.
Aim The development of metacommunity theory inspired a series of studies exploring the importance of environmental and spatial effects on the composition of biotic assemblages. However, the comparison of different groups of organisms has been hampered by differences in sampling design, spatial scales or the environmental variables involved. Our aim was to test how dispersal ability affects metacommunity structure and associated species distributions by sampling different species groups in the same plots to avoid these problems. Location Western Carpathian Mountains (Europe). Methods In 191 fens we sampled the composition of diatom, bryophyte, vascular plant and mollusc assemblages, water chemistry, and macroclimatic data. We then generated spatial variables covering all relevant spatial scales using analysis of principal coordinates of neighbour matrices (PCNM). We applied the adjusted variation partitioning algorithm to quantify the effects of environment and space. Results Pure effects of water chemistry and space were highly significant for all groups of organisms. Spatial effects were stronger for groups with larger propagules (vascular plants, molluscs) than for those with smaller propagules (diatoms, bryophytes). Assemblages of macroscopic bryophytes were structured slightly less by geography and much more by environment than were those of microscopic diatoms. Vascular plant and mollusc assemblages turned out to be more spatially structured (as compared to diatom and bryophyte assemblages), with small differences between the two groups. Coarse‐scale spatial effects dominated in the bryophyte metacommunity, while in the other groups, including diatoms, finer‐scale effects were also important. Main conclusions Given that our analyses are based on a standardized sampling and analytical framework, our findings provide strong support for the hypothesis that both environmental and spatial variables structure metacommunities of organisms with very different dispersal abilities, including microscopic diatoms. In addition, we show for the first time that the strengths of these effects and their scale dependence may be predicted using important trait differences between organisms, for example differences in propagule size.  相似文献   
99.
Aim The term relict refers to a formerly widespread species currently occurring in refugia that provide a persistent combination of specific ecological conditions. In peatlands, direct palaeoecological evidence of relict status exists for some plant species and, in the case of calcareous sediments, for some snail species. We tested whether some species are significantly linked to old calcareous fens at the millennial scale independent of the effect of recent fen area. We focused on three organism groups – vascular plants, bryophytes and land snails – that differ in the degree of preservation of their remains in calcareous fen sediments and in their dispersal ability. Location Western Carpathians (Slovakia and the Czech Republic). Methods The sample sites comprised 47 well‐preserved calcareous fens, from which we compiled complete recent species lists, measured the area and analysed radiocarbon‐dated samples from the deepest sediment and from the beginning of complete deforestation, as indicated by plant and snail fossils. Using the species co‐occurrences in large data sets, we identified calcareous fen specialists and compared their recent distribution patterns against a null model that controlled for the effect of fen area. Results Two land snail species, eleven vascular plant species and no bryophyte species have statistically significant affinities with old fens, independent of the effect of recent fen area. For one bryophyte and one snail, the effects of age and area are not distinguishable. Main conclusions The results for land snails, being abundantly preserved and easily determinable in calcareous fen deposits, are in full accordance with the direct macrofossil evidence. This suggests that our approach indirectly revealed a relict distribution of the species. Identification of species that are significantly linked to ancient localities at the millennial scale has great potential in palaeoecology for the detection of stands with old sediments, and in nature conservation as a tool for the identification of long‐term‐persisting rare species that infrequently colonize young sites and thus deserve priority in the protection of their habitats. From a theoretical perspective, limited dispersal from old to new localities of the same habitat can contribute to spatial effects in biotic assemblages, even at relatively fine scales.  相似文献   
100.
Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral–niche community dynamics. The neutral–niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号