首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   14篇
  国内免费   6篇
  2023年   5篇
  2022年   2篇
  2021年   11篇
  2020年   9篇
  2019年   24篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   4篇
  2013年   13篇
  2012年   7篇
  2011年   7篇
  2010年   7篇
  2009年   8篇
  2008年   6篇
  2007年   7篇
  2006年   10篇
  2005年   11篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
排序方式: 共有193条查询结果,搜索用时 359 毫秒
1.
Superoxide dismutase activity of the captopril-iron complex   总被引:2,自引:0,他引:2  
With an assay that generates superoxide anion radicals without the intervention of metal ions we investigated the antioxidant properties of captopril, an angiotensin-converting enzyme inhibitor with a sulfhydryl group. Under these conditions, increasing concentrations of the drug were seen not to scavenge O· 2 directly. However, a combination of captopril and iron could bring about the breakdown of the superoxide anion; a result that may help to understand the free radical-scavenging properties of captopril.  相似文献   
2.
The objectives of this study were to determine 1) whether reactive oxygen species generated upon postischemic reperfusion lead to oxidative stress in rat hearts, and 2) whether an exogenous prooxidant present in the early phase of reperfusion causes additional injury. Isolated buffer-perfused rat hearts were subjected to 30 min of hypothermic no-flow ischemia followed by 30 min of reperfusion. Increased myocardial content of glutathione disulfide (GSSG) and increased active transport of GSSG were used as indices of oxidative stress. To impose a prooxidant load, cumene hydroperoxide (20 M) was administered during the first 10 min of reperfusion to a separate group of postischemic hearts. Reperfusion after 30 min of hypothermic ischemia resulted in a recovery of myocardial ATP from 28% at end-ischemia to 50–60%, a release of 5% of total myocardial LDH, and an almost complete recovery of both coronary flow rate and left ventricular developed pressure. After 5 and 30 min of reperfusion, neither myocardial content of GSSG nor active transport of GSSG were increased. These indices were increased, however, if cumene hydroperoxide was administered during early reperfusion. After stopping the administration of cumene hydroperoxide, myocardial GSSG content returned to control values and GSH content increased, indicating an unimpaired glutathione reductase reaction. Despite the induction of oxidative stress, reperfusion with cumene hydroperoxide did not cause additional metabolic, structural, or functional injury when compared to reperfusion without cumene hydroperoxide. We conclude that reactive oxygen species generated upon postischemic reperfusion did not lead to oxidative stress in isolated rat hearts. Moreover, even a superimposed prooxidant load during early reperfusion did not cause additional injury.  相似文献   
3.
To examine whether basic fibroblast growth factor (bFGF) administered to the heart by perfusion can improve cardiac resistance to injury we employed an isolated rat heart model of ischemia-reperfusion injury and determined the extent of functional recovery in bFGF-treated and control hearts. Global ischemia was simulated by interruption of flow for 60 min. Recovery of developed force of contraction (DF), recorded after reestablishment of flow for 30 min, reached 63.8±1.5% and 96.5±3.5% of preischemic levels in control and bFGF-treated hearts (10 g/heart), respectively, indicating that bFGF induced significantly improved recovery of mechanical function. Recoveries of the rates of contraction or relaxation were also significantly improved in bFGF-treated hearts. Extent of myocardial injury, assessed by determination of phosphocreatine kinase in the effluent, was reduced as a result of bFGF treatment. As a first step towards understanding the mechanism and direct cellular target(s) of bFGF-induced cardioprotection, we investigated its fate after perfusion. Perfusion of 10 g bFGF/heart resulted in a 4-fold increase in bFGF associated with the heart compared to control levels, as estimated by biochemical fractionation and immunoblotting. Immunofluorescent staining of the bFGF-perfused hearts revealed intense anti-bFGF staining in association with blood vessels as well as the periphery of cardiomyocytes, suggesting that the latter may be a target for direct bFGF action. In conclusion, our findings of bFGF-induced increases in cardiac resistance to, and improved functional recovery from, ischemia-reperfusion injury indicate that bFGF may have clinical applications in the treatment of ischemic heart disease.  相似文献   
4.
目的:探讨大豆异黄酮对脑缺血再灌注大鼠RhoA/ROCK2信号通路介导的氧化应激反应和神经元凋亡的影响。方法:60只SD大鼠随机分为3组,对照组、模型组、大豆异黄酮组。连续给药7天后,给药剂量200 mg/kg。应用中动脉栓塞再灌注模型致大鼠缺血损伤。24 h后评价大鼠神经功能,TTC染色检测脑梗死体积,试剂盒检测脑中氧化因子含量,免疫组化检测神经元损伤,Western Blotting检测RhoA/ROCK2相关蛋白含量。结果:与对照组比较,模型组大鼠神经功能评分降低(P0.05),脑梗死体积增加(P0.05),氧化因子含量增加(P0.05),神经元凋亡显著(P0.05),RhoA/ROCK2蛋白表达增加(P0.05)。与模型组相比,大豆异黄酮升高了大鼠神经功能评分(P0.05),减少的脑梗死体积(P0.05),降低脑中氧化因子含量(P0.05),抑制了神经元凋亡(P0.05),抑制了RhoA/ROCK2蛋白表达(P0.05)。结论:大豆异黄酮可以缓解脑缺血再灌注损伤介导的氧化应激及细胞凋亡,进而减轻神经功能障碍,其机制可能与抑制RhoA/ROCK2信号通路相关。  相似文献   
5.
《Free radical research》2013,47(11-12):1355-1365
Abstract

Constitutive heat shock protein 70 (Hsc70) is a molecular chaperone that has been shown to protect cardiomyocytes against oxidative stress. However, the molecular mechanism responsible for this protection remains uncertain. To understand the mechanism associated with the myocardial protective role of Hsc70, we have embarked upon a systematic search for Hsc70-interacting proteins. Using adenosine diphosphate (ADP) affinity chromatography and mass spectrometry, we have identified α-enolase, a rate-limiting enzyme in glycolysis, as a novel Hsc70-interacting protein in the myocardium of both sham and myocardial ischemia-reperfused Sprague–Dawley rat hearts. This interaction was confirmed by co-immunoprecipitation (IP) assays in the myocardial tissues and H9c2 cardiomyocytes and protein overlay assay (POA). It was further shown that Hsc70-overexpression alleviated the H2O2-induced decrease of α-enolase activity and cell damage, and Hsc70 deficiency aggravated the decrease of α-enolase activity and cell damage in H2O2 treated H9c2 cells. Our research suggests that the protective effect of Hsc70 on the cardiomyocytes against oxidative stress is partly associated with its interaction with α-enolase.  相似文献   
6.
《Free radical research》2013,47(1):725-735
Oxygenated free-radicals appear to play a prominent role in mediating damage associated with gastrointestinal diseases. Production of reactive oxygen metabolites in ischemia-reperfusion involves oxidases found in resident phagocytic cells and microvascularand mucosal epithelial cells. Platelet activating factor (PAF), a phospholipid associated with inflammatory disorders, has been shown to both prime and amplify the release of superoxide anion and hydrogen peroxide from polymorphonuclear neutrophils and macrophages stimulated by FMLP or PMA. To further elucidate the involvement of free radicals in intestinal damage and the potential role of PAF in their production, we examined the effect of superoxide dismutase (SOD) and BN 52021 (ginkgolide B) on ischemia-reperfusion induced damage in the small intestine.

The study involved 32 Sprague-Dawley rats (100–200 g) divided into four groups. Three of these groups were subjected to occlusion of the mesenteric artery 30 mins followed by 24 h reperfusion. On 2 groups SOD (15,000 U/kg/iv) and BN 52021 (20 mg/kg/po) were administered 45 mins before arterial occlusion. Following the 24 h reperfusion, the rats were sacrificed after overnight fasting. The jejunum and ileon were removed and fixed for morphological examination. Lesions in the small intestine were quantified.

The results showed extensive necrosis, hemorrhage, oedema and neutrophil invasion in the jejunal and ileal mucosa. This injury was significantly reduced by SOD (15.000 U/kg/iv) and BN 52021 (20 mg/kg/po) pretreatment. In conclusion, free-oxygenated radicals appear to mediate reperfusion damage in the small intestine and PAF appears to be involved in the genesis of these toxic products. Thus, SOD and BN 52021 may be considered as protectors against ischemic disorders.  相似文献   
7.
Oxidative stress can cause extensive damage to cardiac tissue under reperfusion conditions. However, preconditioning the myocardium may diminish these negative effects and alleviate reperfusion injury. There are a variety of preconditioning therapies, such as ischemic preconditioning (IPC) and hypoxic preconditioning (HPC), each targeting specific channels, receptors, and/or intracellular molecules. Ischemic preconditioning involves brief periods of ischemia followed by brief periods of reperfusion, thus strengthening the cardiac resistance for a longer period of ischemia. IPC involves complex mechanisms, some of which are still not completely understood today. Nevertheless, many studies have already established models of IPC. In addition, similar to IPC, HPC has also been recognized as preventing reperfusion injury. Reactive oxygen species (ROS) are known mediators of IPC and HPC. Particularly, mitochondria-generated ROS initiate activity of several beneficial preconditioning pathways. The role of ROS is paradoxical; low levels of ROS are key factors in signaling IPC/HPC, but high levels of ROS can contribute to increased oxidative stress on cardiomyocytes. Therefore, it is important to determine the molecular mechanism of IPC and HPC to avoid excessive accumulation of ROS to prevent cardiac injury. In this review, we will outline IPC and HPC, explaining the putative role of ROS in both pathways. We will also discuss preconditioning efficacy in certain conditions such as exercise and how the aging myocardium responds to preconditioning therapies.  相似文献   
8.
一氧化氮 ( NO ) 是体内调节心血管系统功能的重要信号分子,在血管收舒、血小板活性调节、细胞增殖凋亡、氧化应激及炎症反 应等过程中发挥了不可或缺的作用。在心肌缺血再灌注过程中,随着一氧化氮合成酶表达和 NO 底物水平的动态变化,NO 生成的时间和 产量均会发生变化,导致其作用具有两面性。综述 NO 的产生与作用、在心肌缺血再灌注损伤中的作用和影响因素以及相关治疗药物及作 用机制的研究进展,为心肌缺血再灌注损伤的有效治疗和进一步研究提供参考  相似文献   
9.
Administration of propofol at the time of reperfusion has shown to protect the heart from ischemia and reperfusion (I/R) injury. The aim of the present study was to investigate the molecular mechanism underling the cardioprotective effect of propofol against myocardial I/R injury (MIRI) in vivo and in vitro. Rat heart I/R injury was induced by ligation of the left anterior descending (LAD) artery for 30 min followed by 2-hr reperfusion. Propofol pretreatment (0.01 mg/g) was performed 10 min before reperfusion. In vitro MIRI was investigated in cultured cardiomyocytes H9C2 following hypoxia/reoxygenation (H/R) injuries. Propofol pretreatment in vitro was achieved in the medium supplemented with 25 μmol/L propofol before H/R injuries. Propofol pretreatment significantly increased miRNA-451 expression, decreased HMGB1 expression, reduced infarct size, and I/R-induced cardiomyocyte apoptosis in rat hearts undergoing I/R injuries. Knockdown of miRNA-451 48 hr before I/R injury was found to increase HMGB1 expression, infarct size, and I/R-induced cardiomyocyte apoptosis in rat hearts in the presence of propofol pretreatment. These in vivo findings were reproduced in vivo that knockdown of miRNA-451 48 hr before H/R injuries increased HMGB1 expression and H/R-induced apoptosis in cultured H9C2 supplemented with propofol. In addition, luciferase activity assays and gain-of-function studies found that propofol could decrease HMGB1, the target of miRNA-541. Taken together our findings provide a first demonstration that propofol-mediated cardioprotection against MIRI is dependent of microRNA-451/HMGB1. The study provides a novel target to prevent I/R injury during propofol anesthesia.  相似文献   
10.
The aim of the current study was to investigate the effects and the underlying mechanisms of troxerutin on myocardial cell apoptosis during ischemia-reperfusion (I/R) injury. Hypoxia/reoxygenation (H/R) model in neonatal rat cardiomyocytes, and I/R model in rats, were established following troxerutin preconditioning. The quantitative real-time polymerase chain reaction analysis was performed to examine the messenger RNA miR-146a-5p expression in cardiomyocytes and myocardial tissues. Hemodynamic parameters and serum creatine kinase, lactate dehydrogenase, tumor necrosis factor-α, and interleukin-10 were evaluated. Infarct size was examined by 2,3,5-triphenyltetrazolium chloride staining. Besides, myocardial apoptosis was detected by terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the protein levels of caspase-3, Bax, and Bcl-2. The results showed that, troxerutin decreased rat cardiomyocyte apoptosis during H/R injury. Furthermore, the antiapoptotic effect of troxerutin against I/R injury was mediated by miR-146a-5p downregulation. In vivo experiments suggested that troxerutin alleviated myocardial I/R injury in rats via inhibition of miR-146a-5p. In conclusion, troxerutin exerted cardioprotective effects during I/R injury by downregulating miR-146a-5p.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号