首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   36篇
  国内免费   8篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   9篇
  2017年   12篇
  2016年   11篇
  2015年   14篇
  2014年   10篇
  2013年   11篇
  2012年   3篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有189条查询结果,搜索用时 78 毫秒
1.
Organic–inorganic hybrid perovskite solar cells (PSCs) have become a promising candidate in the photovoltaic field due to their high power conversion efficiency and low material cost. However, the development of PSCs is limited by their poor stability under practical conditions in the presence of oxygen, moisture, sunlight, heat, and the current–voltage (IV) hysteresis. In particular, the hysteretic IV issue casts doubt on the validity of the photovoltaic performance results that are achieved, making it difficult to evaluate the authentic performance of PSCs. This review article focuses on understanding the IV hysteresis behavior in PSCs and on exploring the possible reasons leading to this hysteresis phenomenon. The various strategies attempted to suppress the IV hysteresis in PSCs are summarized, and a brief future recommendation is provided.  相似文献   
2.
Application of the air‐puff swept source optical coherence tomography (SS‐OCT) instrument to determine the influence of viscoelasticity on the relation between overall the air‐puff force and corneal apex displacement of porcine corneas ex vivo is demonstrated. Simultaneous recording of time‐evolution of the tissue displacement and air pulse stimulus allows obtaining valuable information related in part to the mechanical properties of the cornea. A novel approach based on quantitative analysis of the corneal hysteresis of OCT data is presented. The corneal response to the air pulse is assessed for different well‐controlled intraocular pressure (IOP) levels and for the progression of cross‐linking‐induced stiffness of the cornea. Micrometer resolution, fast acquisition and noncontact character of the air‐puff SS‐OCT measurements have potential to improve the in vivo assessment of mechanical properties of the human corneas.   相似文献   
3.
Organic–inorganic hybrid perovskite solar cells based on CH3NH3PbI3 have achieved great success with efficiencies exceeding 20%. However, there are increasing concerns over some reported efficiencies as the cells are susceptible to current–voltage (I–V) hysteresis effects. It is therefore essential that the origins and mechanisms of the I–V hysteresis can clearly be understood to minimize or eradicate these hysteresis effects completely for reliable quantification. Here, a detailed electro‐optical study is presented that indicates the hysteresis originates from lingering processes persisting from sub‐second to tens of seconds. Photocurrent transients, photoluminescence, electroluminescence, quasi‐steady state photoinduced absorption processes, and X‐ray diffraction in the perovskite solar cell configuration have been monitored. The slow processes originate from the structural response of the CH3NH3PbI3 upon E‐field application and/or charge accumulation, possibly involving methylammonium ions rotation/displacement and lattice distortion. The charge accumulation can arise from inefficient charge transfer at the perovskite interfaces, where it plays a pivotal role in the hysteresis. These findings underpin the significance of efficient charge transfer in reducing the hysteresis effects. Further improvements of CH3NH3PbI3‐based perovskite solar cells are possible through careful surface engineering of existing TiO2 or through a judicious choice of alternative interfacial layers.  相似文献   
4.
5.
A mathematical model is presented for the emergence of perceptual-cognitive-behavioral modes in psychophysical experiments in which participants are confronted with two alternatives. The model is based on the theory of self-organization and, in particular, the order parameter concept such that the emergence of a mode is conceptualized as an instability leading to the emergence of an appropriately defined order parameter. The order parameter model is merged with a second model that describes adaptation in terms of a system parameter dynamics. It is shown that the two-component model predicts hysteretic mode-mode transitions when control parameters are increased or decreased beyond critical values. The two-component model can account for both positive and negative hysteresis effects due to the interaction between order parameter and system parameter dynamics. Moreover, the model-based analysis reveals that response time curves look rather flat when response times are relatively decoupled from the mode-mode transition phenomenon. In general, response time curves exhibit a peaked close to the mode-mode transition point. In this context, the possibility is discussed that such peaked response time curves belong to the class of critical phenomena of self-organizing systems. In order to illustrate the relevance of peaked response time curves for future research and research reported in the past, results from a perceptual judgment experiment are reported, in which participants judged their ability to stand on a tilted slope for various angles of inclination. Response time curves were found that exhibited a peak around the mode-mode-transition points between “yes” and “no” responses.  相似文献   
6.
Additives are widely adopted for efficient, stable, and hysteresis‐free perovskite solar cells and play an important role in various breakthroughs of perovskite solar cells (PSCs). Herein the various additives adopted for PSCs are reviewed and their functioning mechanism and influence on device performance is described. The main roles of additives, modulating morphology of perovskite films, stabilizing phase of formamidinium (FA) and cesium (Cs)‐based perovskites, adjusting energy level alignment in PSCs, suppressing nonradiative recombination in perovskites, eliminating hysteresis, enhancing operational stability of PSCs, are summarized.  相似文献   
7.
In DNA, i‐motif (iM) folds occur under slightly acidic conditions when sequences rich in 2′‐deoxycytidine (dC) nucleotides adopt consecutive dC self base pairs. The pH stability of an iM is defined by the midpoint in the pH transition (pHT) between the folded and unfolded states. Two different experiments to determine pHT values via circular dichroism (CD) spectroscopy were performed on poly‐dC iMs of length 15, 19, or 23 nucleotides. These experiments demonstrate two points: (1) pHT values were dependent on the titration experiment performed, and (2) pH‐induced denaturing or annealing processes produced isothermal hysteresis in the pHT values. These results in tandem with model iMs with judicious mutations of dC to thymidine to favor particular folds found the hysteresis was maximal for the shorter poly‐dC iMs and those with an even number of base pairs, while the hysteresis was minimal for longer poly‐dC iMs and those with an odd number of base pairs. Experiments to follow the iM folding via thermal changes identified thermal hysteresis between the denaturing and annealing cycles. Similar trends were found to those observed in the CD experiments. The results demonstrate that the method of iM analysis can impact the pHT parameter measured, and hysteresis was observed in the pHT and Tm values.  相似文献   
8.
9.
Editorial     
Abstract

Grand canonical molecular dynamics (GCMD) simulations are used to study the adsorption and desorption of Lennard-Jones nitrogen in three slit pore junction models of microporous graphite. These networks consist of two narrow pores separated by a wider (cavity) pore. We report results for cases where the narrow pore has a width of only two or three molecular diameters. Using the GCMD technique, a novel freezing transition is observed which results in pore blocking in the narrow pores of the network, which are less than 1 nm wide. This freezing results from the adsorption energy barrier at the junction between the narrow and wider pores. This type of pore blocking could account for the apparent increase in pore volume with increasing temperature that has been experimentally observed in microporous graphite systems. For networks in which the narrower pores are somewhat larger, with a width of 1.28 nm, this pore blocking effect is much reduced, and adsorbate molecules enter and fill the central cavity. In such cases, however, desorption is incomplete, some residual adsorbate remaining in the central cavity even at the lowest pressures.  相似文献   
10.
Antifreeze proteins (AFPs) are a group of proteins that protect organisms from deep freezing temperatures and are expressed in vertebrates, invertebrates, plants, bacteria, and fungi. The nuclear magnetic resonance, x-ray structure, and many spectroscopic studies with AFPs have been instrumental in determining the structure–function relationship. Mutational studies have indicated the importance of hydrophobic residues in ice binding. Various studies have pointed out that the mechanism of AFP action is through its adsorption on the ice surface, which leads to a curved surface, preventing further growth of ice by the “Kelvin effect.” The AFPs have potential industrial, medical, and agricultural application in different fields, such as food technology, preservation of cell lines, organs, cryosurgery, and cold hardy transgenic plants and animals. However, the applications of AFPs are marred by high cost due to low yield. This review deals with the source and properties of AFPs from an angle of their application and their potential. The possibility of production using different molecular biological techniques, which will help increase the yield, is also dealt with.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号