首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   3篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), the most prominent lysoglycerophospholipids, are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes and prostaglandins with which they share metabolic pathways and regulatory mechanisms. Enzymes that participate in LPC and LPA metabolism, such as the phospholipase A2 superfamily (PLA2) and autotaxin (ATX, ENPP2), play central roles in regulating LPC and LPA levels and consequently their actions. LPC/LPA biosynthetic pathways will be briefly presented and LPC/LPA signaling properties and their possible functions in the regulation of the immune system and chronic inflammation will be reviewed. Furthermore, implications of exacerbated LPC and/or LPA signaling in the context of chronic inflammatory diseases, namely rheumatoid arthritis, multiple sclerosis, pulmonary fibrosis and hepatitis, will be discussed. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
2.
Stem cells have been considered as possible therapeutic vehicles for different health related problems such as cardiovascular and neurodegenerative diseases and cancer. Secreted molecules are key mediators in cell–cell interactions and influence the cross talk with the surrounding tissues. There is strong evidence supporting that crucial cellular functions such as proliferation, differentiation, communication and migration are strictly regulated from the cell secretome. The investigation of stem cell secretome is accumulating continuously increasing interest given the potential use of these cells in regenerative medicine. The scope of the review is to report the main findings from the investigation of stem cell secretome by the use of contemporary proteomics methods and discuss the current status of research in the field. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   
3.
Extracts of enamel matrix proteins are used to regenerate periodontal tissues. Amelogenin, the most abundant enamel protein, plays an important role in the regeneration of these tissues. However, the molecular mechanisms by which amelogenin contributes to periodontal regeneration remain unknown. Using primary human bone marrow stroma cells (hBMSCs) transduced with lentivirus encoding human amelogenin (hAm), we performed genome-wide expression profiling to analyze the effects of hAm transduction on the regulation of genes involved in osteogenic differentiation. Our results revealed that BMP-2, BMP-6, OPN and VEGFC were up-regulated. These results suggest that hAm may be a key element in regulating hBMSCs osteogenic differentiation.  相似文献   
4.
5.
6.
7.
Circular RNAs (circRNAs) are a novel class of noncoding RNAs that are widely expressed in human disease. However, circRNAs expression profile and potential mechanism in osteoporosis pathogenesis remain to be further studied. In the present study, a total of 69 circRNAs were identified to be abnormally expressed in osteoporosis patient samples by microarray and bioinformatics analyses. We found that circ_0011269 was notably downregulated in osteoporosis (fold change, 3.94). By means of miRanda algorithm, we constructed the interaction network of circ_0011269-miRNAs in osteoporosis based on target binding and miR-122 was enrolled in the network. Dual-luciferase reporter assay verified the target relationship of miR-122 and circ_0011269/RUNX2. The expression of circ_0011269 and RUNX2 were gradually increased during osteogenic differentiation while miR-122 exhibited a decreased expression. Moreover, overexpression of circ_0011269 could promote RUNX2 expression and inhibit osteoporosis. In summary, this study found that circ_0011269 sponges miR-122 to regulate RUNX2 expression and promotes osteoporosis progression.  相似文献   
8.
The mechanisms underlying the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) remain unclear. In the present study, we aimed to identify the key biological processes during osteogenic differentiation. To this end, we downloaded three microarray data sets from the Gene Expression Omnibus (GEO) database: GSE12266, GSE18043 and GSE37558. Differentially expressed genes (DEGs) were screened using the limma package, and enrichment analysis was performed. Protein‐protein interaction network (PPI) analysis and visualization analysis were performed with STRING and Cytoscape. A total of 240 DEGs were identified, including 147 up‐regulated genes and 93 down‐regulated genes. Functional enrichment and pathways of the present DEGs include extracellular matrix organization, ossification, cell division, spindle and microtubule. Functional enrichment analysis of 10 hub genes showed that these genes are mainly enriched in microtubule‐related biological changes, that is sister chromatid segregation, microtubule cytoskeleton organization involved in mitosis, and spindle microtubule. Moreover, immunofluorescence and Western blotting revealed dramatic quantitative and morphological changes in the microtubules during the osteogenic differentiation of human adipose‐derived stem cells. In summary, the present results provide novel insights into the microtubule‐ and cytoskeleton‐related biological process changes, identifying candidates for the further study of osteogenic differentiation of the mesenchymal stem cells.  相似文献   
9.
Migration of mesenchymal stem cells plays a key role in regeneration of injured tissues. Rheumatoid arthritis (RA) is a chronic inflammatory disease and synovial fluid (SF) reportedly contains a variety of chemotactic factors. This study was undertaken to investigate the role of SF in migration of human bone marrow-derived mesenchymal stem cells (hBMSCs) and the molecular mechanism of SF-induced cell migration. SF from RA patients greatly stimulated migration of hBMSCs and the SF-induced migration was completely abrogated by pretreatment of the cells with the lysophosphatidic acid (LPA) receptor antagonist Ki16425 and by small interfering RNA- or lentiviral small hairpin RNA-mediated silencing of endogenous LPA1/Edg2. Moreover, SF from RA patients contains higher concentrations of LPA and an LPA-producing enzyme autotoxin than normal SF. In addition, SF from RA patients increased the intracellular concentration of calcium through a Ki16425-sensitive mechanism and pretreatment of the cells with the calmodulin inhibitor W7 or calmodulin-dependent protein kinase II inhibitor KN93 abrogated the SF-induced cell migration. These results suggest that LPA-LPA1 plays a key role in the migration of hBMSCs induced by SF from RA patients through LPA1-dependent activation of calmodulin-dependent protein kinase II.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号