首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2002年   1篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有17条查询结果,搜索用时 62 毫秒
1.
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.  相似文献   
2.
3.
Reduction of toxic metabolite formation of acetaminophen   总被引:5,自引:0,他引:5  
Acetaminophen is a widely used over-the-counter drug that causes severe hepatic damage upon overdose. Cytochrome P450-dependent oxidation of acetaminophen results in the formation of the toxic N-acetyl-p-benzoquinone-imine (NAPQI). Inhibition of cytochrome P450 enzymes responsible for NAPQI formation might be useful--besides N-acetylcysteine treatment--in managing acetaminophen overdose. Investigations were carried out using human liver microsomes to test whether selective inhibition of cytochrome P450s reduces NAPQI formation. Selective inhibition of CYP3A4 and CYP1A2 did not reduce, whereas the inhibition of CYP2A6 and CYP2E1 significantly decreased NAPQI formation. Furthermore, selective CYP2E1 inhibitors that are used in human therapy were tested for their inhibitory effect on NAPQI formation. 4-Methylpyrazole, disulfiram, and diethyl-dithiocarbamate were the most potent inhibitors with IC(50) values of 50 microM, 8 microM, and 33 microM, respectively. Although cimetidin is used in the therapy of acetaminophen overdose as an inhibitor of cytochrome P450, it is not able to reduce NAPQI formation.  相似文献   
4.
双硫仑作为一种治疗慢性酒精中毒的药物在临床中广泛使用。近几十年研究发现它除了戒酒作用还在治疗癌症中具有巨大潜力,针对它在体外和体内模型的研究结论已有部分在临床治疗中得到证实。双硫仑通过其代谢产物抑制乙醛脱氢酶活性导致体内乙醛含量积累,增加细胞毒性从而抑制肿瘤干细胞增殖分化;提高细胞内活性氧的浓度诱导细胞凋亡;抑制蛋白酶体活性,积累大量废弃蛋白质诱导细胞凋亡;通过抑制NF-κB下调来抑制上皮间质转化等。此外双硫仑与抗癌药物联合使用可提升抗癌药物药效。由于具有低毒、低成本且对肿瘤组织有趋向性等特点,双硫仑重新应用于临床作为抗癌药物具有广阔前景。简要回顾了双硫仑最新研究中阐明的双硫仑抗癌作用分子机制,展望了未来双硫仑用作新临床抗癌药物的前景,以期为双硫仑在抗癌药物中的应用研究提供参考。  相似文献   
5.
A kinetic analysis of the effect of disulfiram on the isoenzymes of lipoxygenase from soybean has been carried out. The compound is an effective inhibitor of type-2 isoenzymes but has no effect on the type-1 isoenzyme under the conditions employed in this study. The inhibitory effect is reversible and therefore does not result from covalent modification of the enzyme. The inhibition is manifest as a prolongation of the lag phase commonly seen in progress curves for lipoxygenases rather than as a reduction of the catalysed rate. A variety of structurally related and unrelated compounds have been investigated to identify the nature of the inhibitory effect. The antioxidant properties of disulfiram account for its ability to inhibit type-2 lipoxygenases. The inhibitory effect of antioxidants on type-2 lipoxygenase is only partly reversed when product hydroperoxide is included in the incubation mixture. These observations support the conclusion that free radical intermediates are integral to the catalytic mechanism of type-2 lipoxygenases.  相似文献   
6.
Disulfiram is a cocaine pharmacotherapy that may act through increasing serotonin, benefiting patients with genetically low serotonin transporter levels (5‐HTTLPR, S′ allele carriers) and low serotonin synthesis (TPH2, A allele carriers). We stabilized 71 cocaine and opioid co‐dependent patients on methadone for 2 weeks and randomized them into disulfiram and placebo groups for 10 weeks. We genotyped the SLC6A4 5‐HTTLPR (rs4795541, rs25531) and TPH2 1125A>T (rs4290270) variants and evaluated their role in moderating disulfiram treatment for cocaine dependence. Cocaine‐positive urines dropped from 78% to 54% for the disulfiram group and from 77% to 76% for the placebo group among the 5‐HTTLPR S′ allele carriers (F = 16.2; df = 1,301; P < 0.0001). TPH2 A allele carriers responded better to disulfiram than placebo (F = 16.0; df = 1,223; P < 0.0001). Patients with both an S′ allele and a TPH2 A allele reduced cocaine urines from 71% to 53% on disulfiram and had no change on placebo (F = 21.6; df = 1,185; P < 0.00001).  相似文献   
7.
Examination of cadmium (Cd) toxicity and disulfiram (DSF) effect on liver was focused on oxidative stress (OS), bioelements status, morphological and functional changes. Male Wistar rats were intraperitoneally treated with 1?mg CdCl2/kg BW/day; orally with 178.5?mg DSF/kg BW/day for 1, 3, 10 and 21 days; and co-exposed from 22nd to 42nd day. The co-exposure nearly restored previously suppressed total superoxide dismutase (SOD), catalase (CAT) and increased glutathione peroxidase (GPx) activities; increased previously reduced glutathione reductase (GR) and total glutathione-S-transferase (GST) activities; reduced previously increased superoxide anion radical (O2·?) and malondialdehyde (MDA) levels; increased zinc (Zn) and iron (Fe), and decreased copper (Cu) (yet above control value), while magnesium (Mg) was not affected; and decreased serum alanine aminotransferases (ALT) levels. Histopathological examination showed signs of inflammation process as previously demonstrated by exposure to Cd. Overall, we ascertained partial liver redox status improvement, compared with the formerly Cd-induced impact.  相似文献   
8.
The chronic administration of disulfiram (DS) to rats resulted in significant decrease of synaptosomal Ca2+, Mg2+-ATPase activity. In vitro studies indicated that DS (ID50=20 M) produced a dose-dependent inhibition of Ca2+, Mg2+-ATPase. However, diethyldithio-carbamate, a metabolite of DS, failed to modify Ca2+, Mg2+-ATPase activity, implying that the decrease in ATPase activity in DS administered rats was due to the effect of parent compound. The DS-mediated inhibition (48%) of ATPase activity was comparable with a similar degree of inhibition (49%) achieved by treating the synaptosomal membranes with N-ethylmaleimide (ID50=20 M) in vitro. Furthermore, the inhibition by DS was neither altered by washing the membranes with EGTA nor reversed by treatment with sulfhydryl reagents such as GSH or dithiothreitol. About 74% and 68% decrease of synaptosomal Ca2+, Mg2+-ATPase specific activity was observed when treated with DS (30 M) and EGTA (100 M) respectively. The remaining 25–30% of total activity is suggested to be of Mg2+-dependent ATPase activity. This indicates that both these drugs may act on a common target, calmodulin component that represents 70–75% of total Ca2+, Mg2+-ATPase activity. Therefore, DS-mediated modulation of synaptosomal Ca2+, Mg2+-ATPase activity could affect its function of maintaining intracellular Ca2+ concentration. This could contribute to the deleterious effects on CNS.  相似文献   
9.
Cisplatin-induced mortality and nephrotoxicity are each predictably worse when the drug is given at certain points within the circadian schedule. Oral disulfiram protects rats from toxic effects at some circadian stages but not others. This manuever does not diminish the anticancer activity of cisplatin in these rats. Human beings given 2 g of oral disulfiram and high doses of cisplatin at the circadian stage associated with least cisplatin nephrotoxicity (prospectively determined potassium excretion acrophase) suffer little or no kidney damage. Disulfiram administration apparently does not interfere with the antineoplastic activity of cisplatin in humans. This is the first demonstration of the feasibility of assignment of treatment time according to a measure of the patient's 'internal clock' as assessed by pretreatment marker rhythmometry. It also establishes the feasibility of giving disulfiram to human beings.  相似文献   
10.
Trace elements participate in the organ specific impact of 1,2-dichloroethane (EDC) and Disulfiram (tetraethylthiuram disulfide; Antabuse (DSF)) administered singly or together, on male Sprague-Dawley rats exposed by diet (AIN-76) to DSF (0 and 0.15% for 10 d before and during exposure to EDC) and by inhalation to EDC (0,153, 304, 455 ppm (v/v); 7 h/d for 5 d/wk for 30 exposure days). Kidney, liver, spleen, and testes at exposure d 30 as well as progressive urine samples were examined for elemental content by simultaneous inductively coupled plasma atomic emission spectroscopy. Each compound singly or together produced EDC dose related (r≥0.8) changes in metal content in organs relative to controls. There were increases induced by EDC alone for P and Sr in the liver and decreases for Fe, Mg, and P in the spleen. EDC in DSF-exposed animals caused increases in Ca, Cu, Fe, Mn, and S and a decrease in K in the liver; increases in Ca, Cu, Fe, Mn, Mo, P, and S and a decrease of Zn in the testes; an increase in Fe and a decrease in K in the spleen; and an increase of P in the kidney. DSF alone increased Cu in the liver but decreased it in the testes and kidney; Pb was increased in the liver and kidney and Zn in the liver, spleen, and kidney; Al and Si were increased also in the liver, S in the spleen, and K in the kidney; Mn and Na were decreased in the kidney. The organs showing histopathology (the liver and testes) both showed increases in Ca, Cu, Fe, Mn, and S. Metals in urine characterized a “shock” impact of the initial exposure by initial excretion of Na and retention of most other elements. After steady state (>12 d), EDC alone caused increases for Sr and Zn; for EDC-DSF, EDC also decreased Na in addition to the changes elicited by DSF alone (increases in S and Zn and a decrease for Cu). The results were interpreted from the perspective of the effects of metals on the glutathione detoxicative pathway, the concentration of free diethyldithiocarbamate in urine, and an interaction with bone. Mechanisms of action of EDC, DSF, and EDC-DSF must include consideration of trace elements in addition to organic intermediates, metabolites, and enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号