首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   16篇
  国内免费   14篇
  2023年   1篇
  2021年   4篇
  2020年   6篇
  2019年   7篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   10篇
  2014年   9篇
  2013年   11篇
  2012年   10篇
  2011年   7篇
  2010年   9篇
  2009年   6篇
  2008年   17篇
  2007年   14篇
  2006年   10篇
  2005年   3篇
  2004年   10篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   4篇
  1985年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有210条查询结果,搜索用时 109 毫秒
1.
Summary The term ergatogyne is used in ants to describe permanently-wingless female adults which are morphologically intermediate between workers and winged queens. This definition is ambiguous because there are two distinct categories of ergatogynes: ergatoid queens and intercastes. Both have an external appearance (ocelli and alitrunk structure) which combines traditional queen and worker characters, and thus can be confused if they both function as reproductives — however intercastes in most species cannot reproduce.Ergatoid queens have replaced winged queens in a substantial number of species. They are sometimes externally similar to conspecific workers, especially in various ponerine species which exhibit limited size dimorphism between castes. Ergatoid queens retain the specialized attributes of a reproductive caste, including larger ovaries, and they are always the functional egg-layers in a colony. In contrast, conspecific intercastes represent various graded stages in a series connecting workers and winged queens, and they occur together with the queens. These hybrid phenotypes result from deviations from the normal pattern of caste differentiation during larval development. Intercastes generally lack a spermatheca and have no reproductive function; however they can mate in a few leptothoracine ants, and then reproduce instead of winged queens in a proportion of colonies.  相似文献   
2.
Reproductive division of labor is a hallmark of social insect societies where individuals follow different developmental pathways resulting in distinct morphological castes. There has been a long controversy over the factors determining caste fate of individuals in social insects. Increasing evidence in the last two decades for heritable influences on division of labor put an end to the assumption that social insect broods are fully totipotent and environmental factors alone determine castes. Nevertheless, the genes that underlie hereditary effects on division of labor have not been identified in any social insects. Studies investigating the hereditary effects on caste determination might have overlooked non-genetic inheritance, while transmission to offspring of factors other than DNA sequences including epigenetic states can also affect offspring phenotype. Genomic imprinting is one of the most informative paradigms for understanding the consequences of interactions between the genome and the epigenome. Recent studies of genomic imprinting show that genes can be differentially marked in egg and sperm and inheritance of these epigenetic marks cause genes to be expressed in a parental-origin-specific manner in the offspring. By reviewing both the eusocial Hymenoptera and termites, I highlight the current theoretical and empirical evidence for genomic imprinting in eusocial insects and discuss how genomic imprinting acts in caste determination and social behavior and challenges for future studies. I also introduce the new idea that genomic imprinting plays an essential role in the origin of eusociality.  相似文献   
3.
Eusocial insects offer a unique opportunity to analyze the evolution of body size differences between sexes in relation to social environment. The workers, being sterile females, are not subject to selection for reproductive function providing a natural control for parsing the effects of selection on reproductive function (i.e., sexual and fecundity selection) from other kinds of natural selection. Patterns of sexual size dimorphism (SSD) and testing of Rensch's rule controlling for phylogenetic effects were analyzed in the Meliponini or stingless bees. Theory predicts that queens may exhibit higher selection for fecundity in eusocial taxa, but contrary to this, we found mixed patterns of SSD in Meliponini. Non‐Melipona species generally have a female‐biased SSD, while all analyzed species of Melipona showed a male‐biased SSD, indicating that the direction and magnitude of the selective pressures do not operate in the same way for all members of this taxon. The phylogenetic regressions revealed that the rate of divergence has not differed between the two castes of females and the males, that is, stingless bees do not seem to follow Rensch's rule (a slope >1), adding this highly eusocial taxon to the various solitary insect taxa not conforming with it. Noteworthy, when Melipona was removed from the analysis, the phylogenetic regressions for the thorax width of males on queens had a slope significantly smaller than 1, suggesting that the evolutionary divergence has been larger in queens than males, and could be explained by stronger selection on female fecundity only in non‐Melipona species. Our results in the stingless bees question the classical explanation of female‐biased SSD via fecundity and provide a first evidence of a more complex determination of SSD in highly eusocial species. We suggest that in highly eusocial taxa, additional selection mechanisms, possibly related to individual and colonial interests, could influence the evolution of environmentally determined traits such as body size.  相似文献   
4.
Greater size and strength are common attributes of contest winners. Even in social insects with high cooperation, the right to reproduce falls to the well-fed queens rather than to poorly fed workers. In Dictyostelium discoideum, formerly solitary amoebae aggregate when faced with starvation, and some cells die to form a stalk which others ride up to reach a better location to sporulate. The first cells to starve have lower energy reserves than those that starve later, and previous studies have shown that the better-fed cells in a mix tend to form disproportionately more reproductive spores. Therefore, one might expect that the first cells to starve and initiate the social stage should act altruistically and form disproportionately more of the sterile stalk, thereby enticing other better-fed cells into joining the aggregate. This would resemble caste determination in social insects, where altruistic workers are typically fed less than reproductive queens. However, we show that the opposite result holds: the first cells to starve become reproductive spores, presumably by gearing up for competition and outcompeting late starvers to become prespore first. These findings pose the interesting question of why others would join selfish organizers.  相似文献   
5.
The success of all insect societies relies on their ability to maintain optimal levels of different castes. Here we report on an apparent free-running circannual rhythm that optimizes the developmental time of the soldier caste of Coptotermes formosanus Shiraki. Over a 3 year period, bioassays were conducted each month (except June) with groups of 100 termite workers in a 28°C incubator in total darkness. The number of days needed for C. formosanus soldiers to develop varied depending on the time of the year (month). In March, just prior to the major swarming exodus for alates (April to June), 9 days were required before a worker molted to a presoldier. Longer times were required for such a molt in all other months, with an increasing trend from April to December (from 13 to 30 days) and a decreasing trend from January to February (from 25 to 12 days). Colony origin or the length of time that termites were kept in the laboratory under constant conditions (26 – 28°C, 70 – 80% RH) before testing (7 days – 1 year) did not affect this rhythm. This is the first demonstrated evidence of a free-running circannual rhythm in a social insect. Received 23 July 2007; revised 9 and 21 August 2007; accepted 23 August 2007.  相似文献   
6.
The caste system has persisted in Indian Hindu society for around 3,500 years. Like the Y chromosome, caste is defined at birth, and males cannot change their caste. In order to investigate the genetic consequences of this system, we have analysed male-lineage variation in a sample of 227 Indian men of known caste, 141 from the Jaunpur district of Uttar Pradesh and 86 from the rest of India. We typed 131 Y-chromosomal binary markers and 16 microsatellites. We find striking evidence for male substructure: in particular, Brahmins and Kshatriyas (but not other castes) from Jaunpur each show low diversity and the predominance of a single distinct cluster of haplotypes. These findings confirm the genetic isolation and drift within the Jaunpur upper castes, which are likely to result from founder effects and social factors. In the other castes, there may be either larger effective population sizes, or less strict isolation, or both. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Tatiana Zerjal and Arpita Pandya contributed equally to this work.  相似文献   
7.
Advanced societies owe their success to an efficient division of labour that, in some social insects, is based on specialized worker phenotypes. The system of caste determination in such species is therefore critical. Here, we examine in a leaf-cutting ant (Acromyrmex echinatior) how a recently discovered genetic influence on caste determination interacts with the social environment. By removing most of one phenotype (large workers; LW) from test colonies, we increased the stimulus for larvae to develop into this caste, while for control colonies we removed a representative sample of all workers so that the stimulus was unchanged. We established the relative tendencies of genotypes to develop into LW by genotyping workers before and after the manipulation. In the control colonies, genotypes were similarly represented in the large worker caste before and after worker removal. In the test colonies, however, this relationship was significantly weaker, demonstrating that the change in environmental stimuli had altered the caste propensity of at least some genotypes. The results indicate that the genetic influence on worker caste determination acts via genotypes differing in their response thresholds to environmental cues and can be conceptualized as a set of overlapping reaction norms. A plastic genetic influence on division of labour has thus evolved convergently in two distantly related polyandrous taxa, the leaf-cutting ants and the honeybees, suggesting that it may be a common, potentially adaptive, property of complex, genetically diverse societies.  相似文献   
8.
蜜蜂上颚腺及其分泌物研究进展   总被引:1,自引:0,他引:1  
上颚腺是蜜蜂重要的外分泌腺体,其分泌物是维系蜂群社会性结构的重要物质。蜂王和工蜂上颚腺分泌物合成均以硬脂酸为合成前体,但在脂肪酸的β-氧化过程中表现出级型差异性,导致分泌物组分比例不同。蜂王上颚腺分泌物以9-羰基-2癸烯酸(9-ODA)为主,有吸引工蜂和雄蜂、抑制工蜂卵巢发育等作用;工蜂上颚腺分泌物以10-羟基-2癸烯酸(10-HDA)和10-羟基癸酸(10-HDAA)为主,是蜂王浆的重要组成部分。同时,这种具备典型级型差异的分泌物组成又具有级型间可塑性,在不同蜂种间也存在区别。近年来在转录水平和蛋白水平的一些研究进一步揭示了级型间差异的分子基础。针对蜜蜂上颚腺及其分泌物的研究在蜜蜂生物学、行为学和蜂产品质量控制等方面具有重要的意义。本文通过总结国内外相关研究进展,旨在为上颚腺分泌物的作用机制、生物合成机制等领域的进一步深入研究提供借鉴。  相似文献   
9.
Phenotypic plasticity is a hallmark of the caste systems of social insects, expressed in their life history and morphological traits. These are best studied in bees. In their co-evolution with angiosperm plants, the females of corbiculate bees have acquired a specialized structure on their hind legs for collecting pollen. In the highly eusocial bees (Apini and Meliponini), this structure is however only present in workers and absent in queens. By means of histological sections and cell proliferation analysis we followed the developmental dynamics of the hind legs of queens and workers in the fourth and fifth larval instars. In parallel, we generated subtractive cDNA libraries for hind leg discs of queen and worker larvae by means of a Representational Difference Analysis (RDA). From the total of 135 unique sequences we selected 19 for RT-qPCR analysis, where six of these were confirmed as differing significantly in their expression between the two castes in the larval spinning stage. The development of complex structures such as the bees’ hind legs, requires diverse patterning mechanisms and signaling modules, as indicated by the set of differentially expressed genes related with cell adhesion and signaling pathways.  相似文献   
10.
Reproductive or neotenic soldiers of the Archotermopsid Zootermopsis nevadensisnevadensis (Hagen) are compared to sterile soldiers and primary male reproductives. Several head capsule morphometrics correlate significantly with gonad size across all forms and both sexes of soldiers. The easily observed field character of ratio of mandible length to labrum length is a consistent and reliable feature of head capsule external morphology for predicting gonad development and reproductive potential of soldier forms regardless of age, sex, or live weight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号