首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   2篇
  2023年   2篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2006年   1篇
  2003年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
2.
Triple-negative breast cancer, devoid of estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER-2) expression, is deprived of commonly used targeted therapies. MicroRNAs (miRNAs) are undergoing a revolution in terms of potentially diagnostic or therapeutic elements. Combining computational approaches, we enriched miRNA binding motifs of Wnt pathway-associated upregulated genes. Our in-depth bioinformatics, in vitro and in vivo analyses indicated that miR-381 targets main genes of the Wnt signaling pathway including CTNNB1, RhoA, ROCK1, and c-MYC genes. The expression level of miR-381 and target genes was assessed by quantitative real-time polymerase chain reaction (RT-qPCR) in MCF-7, MDA-MB-231, and MCF-10A as well as 20 breast cancer samples and normal tissues. Luciferase reporter assay was performed. Lentiviral particles containing miR-381 were used to evaluate the effect of miR-381 restoration on cell proliferation, migration, and invasion of the invasive triple-negative MDA-MB-231 cell line and also in a mouse model of breast cancer. The expression of miR-381 was lower than that of normal cells, especially in TNBC cell line and breast tissues. Luciferase assay results confirmed that miR-381 targets all the predicted 3′-untranslated regions (3′-UTRs). Upon miR-381 overexpression, the expression of target genes declined, and the migration and invasion potential of miR-381-receiving MDA-MB-231 cells decreased. In a mouse model of triple-negative breast cancer, miR-381 re-expression inhibited the invasion of cancer cells to lung and liver and prolonged the survival time of cancer cell-bearing mice. Therefore, miR-381 is a regulator of Wnt signaling and its re-expression provides a potentially effective strategy for inhibition of TNBC.  相似文献   
3.
The phospholipase A2 receptor 1 (PLA2R1 or PLA2R) was isolated twenty years ago for its ability to bind several secretory phospholipase A2 proteins (sPLA2). Since its identification, it has attracted only a limited interest, mainly in the sPLA2 biology field, as it is viewed uniquely as a regulator of sPLA2 activities. Recent discoveries outline novel important functions of this gene in cancer biology. Indeed, PLA2R1 gain or loss of function experiments in vitro and in vivo shows that this receptor promotes several tumor suppressive responses including senescence, apoptosis and inhibition of transformation. Supporting a tumor suppressive role of PLA2R1, its expression decreases in numerous cancers, and known oncogenes such as HIF2α and c-MYC repress its expression. PLA2R1 promoter methylation, a classical way to repress tumor suppressive gene expression in cancer cells, is observed in leukemia, in kidney and in breast cancer cells. Mechanistically, PLA2R1 activates the kinase JAK2 and orients its activity towards a tumor suppressive one. PLA2R1 also promotes accumulation of reactive oxygen species which induce cell death and senescence. This review compiles recent data demonstrating an unexpected tumor suppressive role of PLA2R1 and outlines the future work needed to improve our knowledge of the functions of this gene in cancer.  相似文献   
4.
5.
6.
G-Quadruplex and i-Motif-forming sequences in the promoter regions of several oncogenes show promise as targets for the regulation of oncogenes. In this study, molecular models were created for the c-MYC NHE-III1 (nuclease hypersensitivity element III1) from two 39-base complementary sequences. The NHE modeled here consists of single folded conformers of the polypurine intramolecular G-Quadruplex and the polypyrimidine intramolecular i-Motif structures, flanked by short duplex DNA sequences. The G-Quadruplex was based on published NMR structural data for the c-MYC 1:2:1 loop isomer. The i-Motif structure is theoretical (with five cytosine–cytosine pairs), where the central intercalated cytosine core interactions are based on NMR structural data obtained for a tetramolecular [d(A2C4)4] model i-Motif. The loop structures are in silico predictions of the c-MYC i-motif loops. The porphyrin meso-tetra(N-methyl-4-pyridyl)porphine (TMPyP4), as well as the ortho and meta analogs TMPyP2 and TMPyP3, were docked to six different locations in the complete c-MYC NHE. Comparisons are made for drug binding to the NHE and the isolated G-Quadruplex and i-Motif structures. NHE models both with and without bound cationic porphyrin were simulated for 100 ps using molecular dynamics techniques, and the non-bonded interaction energies between the DNA and porphyrins calculated for all of the docking interactions. Figure Molecular models of the average structure of the final 20 ps of the molecular dynamics simulation of the c-MYC NHE-III1 (nuclease hypersensitivity element III1) “silencer” element. The G-Quadruplex structure is at the top-center, and the i-Motif is at the bottom-center of each picture. a “Rotation #1” of the G-Quadruplex, with the T15 loop at the top and rear and the G19/A20 loop at the top and front of the picture. b “Rotation #2” of the G-Quadruplex, with the T15 loop at the top and front of the image, and the G19/A20 loop at the front and adjacent to the G-Quadruplex/i-Motif interface  相似文献   
7.
The many faces of c-MYC   总被引:24,自引:0,他引:24  
The proto-oncogene c-MYC is implicated in various physiological processes-cell growth, proliferation, loss of differentiation, and cell death (apoptosis). Oncogenic c-MYC implies constitutive or deregulated expression of c-MYC and is associated with many human cancers often with poor prognosis. Recently, c-MYC has been implicated in the loss and dysfunction of insulin-producing beta cells in diabetes. Intriguingly, this raises the possibility that c-Myc may be a key contributor to disease, not only by deregulating cell proliferation, which is well established, but also by virtue of its opposing role in engendering apoptosis. However, given the fact that human diseases at diagnosis are generally advanced and pathologically complex, it is generally difficult to attribute a specific pathogenic role to c-MYC, or indeed any given single factor, or to assess the potential of therapies targeting individual such factors. Regulatable transgenic mouse models have shed light on these issues, have influenced our thinking about cancer, and have provided encouragement for the future development of cancer therapies based on targeting individual oncogenes such as c-MYC. Although still in its infancy, encouraging results have been reported for several approaches using gene targeting to interfere with c-MYC expression or activity both in vitro and in vivo.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号