首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1463篇
  免费   220篇
  国内免费   85篇
  2024年   1篇
  2023年   26篇
  2022年   23篇
  2021年   51篇
  2020年   57篇
  2019年   176篇
  2018年   174篇
  2017年   39篇
  2016年   43篇
  2015年   68篇
  2014年   79篇
  2013年   68篇
  2012年   50篇
  2011年   64篇
  2010年   39篇
  2009年   63篇
  2008年   58篇
  2007年   72篇
  2006年   89篇
  2005年   63篇
  2004年   61篇
  2003年   59篇
  2002年   46篇
  2001年   39篇
  2000年   37篇
  1999年   35篇
  1998年   30篇
  1997年   30篇
  1996年   15篇
  1995年   17篇
  1994年   13篇
  1993年   6篇
  1992年   13篇
  1991年   15篇
  1990年   4篇
  1989年   11篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
排序方式: 共有1768条查询结果,搜索用时 31 毫秒
1.
  • The experiment was conducted in the 2016/17 crop season in a greenhouse at Passo Fundo University, Brazil. We hypothesised that the morphological characteristics and biochemical and anatomical composition of soybean roots and shoots, when competing with weeds during different growth periods, are negatively affected, so current concepts of competition between plants should also consider changes in plant roots.
  • The soybean cultivar P 95R51 and horseweed (Conyza bonariensis) were used. The treatments consisted of the presence or absence of weeds during different coexistence periods of soybean with horseweed. The periods were V0–V3, V0–V6, V0–R2, V3–R6, V6–R6 and R2–R6, where V0 was the date of soybean sowing and V3, V6, R2 and R6 were phenological stages of the crop. Two fresh roots were used to examine morphological traits. Four roots were used for quantification of dry matter and secondary metabolites.
  • Root length was reduced by 21%, 14% and 20% when competing with a weed in the V0–V3, V0–V6 and R2–R6 coexistence periods, respectively. Total phenol content in the V0–V6 and V0–R2 periods was reduced when plants were in competition with weeds; a similar trend was found for flavonoids in the V0–V6 period.
  • Soybean–horseweed competition from crop emergence to the V6 stage, in general, affects shoot and root morphological traits and the biochemical composition of the soybean roots. The presence of horseweed at the V3, V6 and R2 stages does not negatively alter the traits evaluated. Root anatomical composition is not modified during all coexistence periods with horseweed.
  相似文献   
2.
The shape of compass termite mounds and its biological significance   总被引:2,自引:0,他引:2  
J. Korb 《Insectes Sociaux》2003,50(3):218-221
Summary In northern Australia, compass termites build tall wedge-shaped mounds with an elongated axis that has a striking north-south orientation. Various hypotheses have been advanced to account for this remarkable mound architecture. However, behavioural aspects of mound orientation have rarely been investigated. The currently accepted hypothesis considers mound orientation as an adaptation to local long-term environmental conditions to maintain a temperature plateau at the eastern face of the mound. According to this hypothesis termites should concentrate at the eastern face when ambient temperature conditions are not ideal. This was tested in the current study by applying a new, non-destructive technique that allows monitoring of termites through solid material. Termatrac®, a tool developed for termite pest detection, uses microwaves to detect the movement of termites. As predicted by the eastern- face-plateau hypothesis, termites concentrated in the morning at the eastern face of the mound. However, this pattern was not found at sunrise or noon despite a similar temperature gradient between eastern and western face. This might indicate that only the morning heating of the eastern face is important for the termites, while it plays no prominent role during the rest of the day. The eastern-face-plateau hypothesis is then compared with other hypotheses to develop a general framework that addresses the different characteristics of compass mound architecture: shape, orientation and geographic variation in orientation.Received 1 November 2002; revised 28 January 2003; accepted 12 February 2003.  相似文献   
3.
A G Murzin 《Proteins》1992,14(2):191-201
Twisted beta-sheets, packed face to face, may be arranged in circular formation like blades of a propeller or turbine. This beta-propeller fold has been found in three proteins: that in neuraminidase consists of six beta-sheets while those in methylamine dehydrogenase and galactose oxidase are composed of seven beta-sheets. A model for multisheet packing in the beta-propeller fold is proposed. This model gives both geometrical parameters of the beta-propellers composed of different numbers of sheets and patterns of residue packing at their sheet-to-sheet interfaces. All the known beta-propeller structures have been analyzed, and the observed geometries and residue packing are found to be in good agreement with those predicted by models. It is shown that unusual seven-fold symmetry is preferable to six- or eight-fold symmetry for propeller-like multi-sheet assembly. According to the model, a six-beta-sheet propeller has to have predominantly small residues in the beta-strands closed to its six-fold axis, but no strong sequence constraints are necessary for a seven-fold beta-propeller.  相似文献   
4.
阿拉善高原2种荒漠植物根系构型及生态适应性特征   总被引:1,自引:0,他引:1  
马雄忠  王新平 《生态学报》2020,40(17):6001-6008
根系构型决定了植物对资源的吸收方式,根系构型的变化是植物对环境的生态适应和有效生存策略。在阿拉善高原西南缘红砂(Reaumuria soongarica)-珍珠猪毛菜(Salsola passerina)混生群落采用传统挖掘法收集两种植物根系,基于量化的根系形态指标,利用几何拓扑学及分形理论分析了根系构型特征,探讨了该地区2种植物对干旱生境的生态适应策略。结果表明:红砂和珍珠猪毛菜根系均以水平分布占优,根系浅层化分布明显,混生的两种植物占据不同的生态位;2种荒漠植物均具有较大的比根长(SRL)和比表面积(SRA),红砂SRL=21.3 cm/g,SRA=7.6 cm2/g,珍珠SRL=22.4 cm/g,SRA=6.5 cm2/g,有利于水分和养分的获取;红砂根系拓扑指数(TI)、修正拓扑参数(qa和qb)分别为0.86、0.52、0.49,珍珠猪毛菜对应参数分别为0.93、0.76、0.73,表明2种植物根系均趋向于鱼尾形分支结构;根系分形维数值(FD=1.488、FD=1.422)较小,而分形丰度值(lgK=1.855、lgK=1.774)较大,表明2种植物分支相对简单,但空间拓展能力强,有利于对营养空间的占有。上述特征可能是阿拉善西南缘红砂-珍珠猪毛菜群落2种荒漠植物植物对干旱贫瘠生境的重要生态适应策略。  相似文献   
5.
《植物生态学报》2015,39(8):816
Aims Fractal root system is phenotypic plasticity result of plant root architecture to respond to environmental heterogeneity, may reflect the growth strategy of plants to adapt to environmental conditions. Our objective was to explore the relationship between root fractal dimension and fractal abundance of fractal root system of Melica przewalskyi population in response to aspect variation in the northwest of China. Methods The study site was located in a degraded alpine grassland on the northern slope in Qilian Mountains, Gansu Province, China. Survey and sampling were carried out at 40 plots which were set up along four slope aspects transects with 20 m distance between adjacent plots. Handheld GPS was used to determine the elevation, longitude and latitude of each plot. ArcGIS was used to set up digital elevation model (DEM). Community traits were investigated and six individuals roots of M. przewalskyi were collected randomly at each plot. The samples were cleaned and divided into different organs, then scanning the root with the Win-RHIZO for measurements of fractal dimension and fractal abundance in laboratory, and their biomass were then measured after being dried at 80 °C in an oven. Important findings With the slope aspect turned from north to east, west, and south, the density, height and soil moisture content of the plant community displayed a pattern of initial decline, the height, density, root fractal abundance of M. przewalskyi increased and the root fractal dimension decreased. The root fractal dimension was negatively associated with the fractal abundance in all aspects, but the relationship varied along the slope aspects gradient; there was a highly significant negative correlation (p < 0.01) between the root fractal dimension and fractal abundance at north slope and south slope aspect, whereas the correlation only reached a significant level (p < 0.05) at the east slope aspect and west slope aspect; indicating that there is a trade-off between the root fractal dimension and fractal abundance. In addition, when the slope aspect changed from north to east, west and south, the standardized major axis (SMA) slope of the regression equation in the scaling relationships between root fractal dimension and fractal abundance increased (p < 0.05), indicating that the roots of M. przewalskyi at the droughty southern slope have less branch and more sparse in the same soil volume of root exploitation and utilization. Consequently, the resource allocation pattern on reasonable trade-off between root fractal dimension and fractal abundance in different slope aspect of M. przewalskyi, reflects the relationship between the income and the cost of construction of plant root architecture.  相似文献   
6.
Flowers, the reproductive structures of the approximately 400 000 extant species of flowering plants, exist in a tremendous range of forms and sizes, mainly due to developmental differences involving the number, arrangement, size and form of the floral organs of which they consist. However, this tremendous diversity is underpinned by a surprisingly robust basic floral structure in which a central group of carpels forms on an axis of determinate growth, almost invariably surrounded by two successive zones containing stamens and perianth organs, respectively. Over the last 25 years, remarkable progress has been achieved in describing the molecular mechanisms that control almost all aspects of flower development, from the phase change that initiates flowering to the final production of fruits and seeds. However, this work has been performed almost exclusively in a small number of eudicot model species, chief among which is Arabidopsis thaliana. Studies of flower development must now be extended to a much wider phylogenetic range of flowering plants and, indeed, to their closest living relatives, the gymnosperms. Studies of further, more wide-ranging models should provide insights that, for various reasons, cannot be obtained by studying the major existing models alone. The use of further models should also help to explain how the first flowering plants evolved from an unknown, although presumably gymnosperm-like ancestor, and rapidly diversified to become the largest major plant group and to dominate the terrestrial flora. The benefits for society of a thorough understanding of flower development are self-evident, as human life depends to a large extent on flowering plants and on the fruits and seeds they produce. In this preface to the Special Issue, we introduce eleven articles on flower development, representing work in both established and further models, including gymnosperms. We also present some of our own views on current trends and future directions of the flower development field.  相似文献   
7.
8.
Upper Mustang is a land of extraordinary, precious, tangible and intangible cultural heritage deeply rooted in the Tibetan culture and tradition of Buddhism as well as the Bön religion. The unique architecture provides a great source of timber suitable for dendrochronological research. Century-old fortresses, palaces, Buddhist monasteries and temples, houses and chörtens reflect the great importance of wood as a building material (used alongside clay and stone). We present pioneering research on historical wood from Upper Mustang. The objectives of the study were to determine the wood species used in the traditional architecture of the region, to make an attempt to date materials from Upper Mustang using existing tree-ring chronologies developed for neighbouring geographical regions and to determine the need and the chance of creating separate tree-ring chronologies for Upper Mustang. For the presented study we collected 191 samples from the oldest buildings preserved in Upper Mustang. Anatomical studies of samples resulted in the identification of four species of conifer wood: Himalayan pine – Pinus wallichiana A.B. Jacks, Himalayan fir – Abies spectabilis D.Don, Juniperus spp. and Larix spp. The main achievement of our research was the development of an Upper Mustang master chronology covering the period from 1317 to 1943. The chronology is based on data derived from Pinus wallichiana A.B. Jacks.  相似文献   
9.
The Langmuir-Blodgett technique and its variants (alternate layers, self-organising mixtures, the semi-amphiphilic technique, the peculiar solid state chemistry in L.B. films) are collective methods which allow physical chemists, with a very small amount of synthetic chemistry, to build up molecular assemblies exhibiting not only the properties of each of their components, but also extra properties which arise from the architecture: cooperativity, anomalous chemical properties, molecular recognition, etc. These new tailored molecular edifices are the basic “brick” of tomorrow's molecular electronics and fine chemistry. These strategies are exemplified here by two active supramolecular edifices which have been successfully designed and built up: an artificial dioxygen trap based on the same principle as hemoglobin, and one molecule thick conductors. Promising applied results have already been obtained in the field of gas sensing with these new conductors, owing to molecular architectural amplification.  相似文献   
10.
Little is known about the influence of genetic architecture on local adaptation. We investigated the genetic architecture of the rapid contemporary evolution of mouthparts, the flight polymorphism and life history traits in the soapberry bug Jadera haematoloma (Hemiptera) using laboratory selection. The mouthparts of these seed‐feeding bugs have adapted in 40–50 years by decreasing in length following novel natural selection induced by a host switch to the seeds of an introduced tree with smaller fruits than those of the native host vine. Laboratory selection on beak length in both an ancestral population feeding on the native host and a derived population feeding on the introduced host reveals genetic variance allowing a rapid response (heritabilities of 0.51–0.87) to selection for either longer or shorter beaks. This selection resulted in reverse evolution by restoring long beaks in the derived population and forward evolution by re‐creating short beaks in the ancestral bugs. There were strong genetic correlations (0.68–0.84) in both populations between beak lengths and the frequency of flight morphs, with short beaks associated with short wings. The results reveal a genetically interrelated set of adaptive multivariate traits including both beak length and flight morph. This suite of traits reflects host plant patchiness and seeding phenology. Weaker evidence suggests that egg mass and early egg production may be elements of the same suite. Reversible or forward evolution thus may occur in a broad set of genetically correlated multivariate traits undergoing rapid contemporary adaptation to altered local environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号