首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1708篇
  免费   27篇
  国内免费   13篇
  2023年   4篇
  2022年   12篇
  2021年   18篇
  2020年   27篇
  2019年   11篇
  2018年   22篇
  2017年   14篇
  2016年   19篇
  2015年   92篇
  2014年   268篇
  2013年   264篇
  2012年   348篇
  2011年   161篇
  2010年   109篇
  2009年   51篇
  2008年   64篇
  2007年   65篇
  2006年   37篇
  2005年   33篇
  2004年   42篇
  2003年   31篇
  2002年   16篇
  2001年   4篇
  2000年   7篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
排序方式: 共有1748条查询结果,搜索用时 31 毫秒
1.
The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology.  相似文献   
2.
Bone morphogenetic protein 2 (BMP-2) has been known for decades as a strong osteoinductive factor and for clinical applications is combined solely with collagen as carrier material. The growing concerns regarding side effects and the importance of BMP-2 in several developmental and physiological processes have raised the need to improve the design of materials by controlling BMP-2 presentation. Inspired by the natural cell environment, new material surfaces have been engineered and tailored to provide both physical and chemical cues that regulate BMP-2 activity. Here we describe surfaces designed to present BMP-2 to cells in a spatially and temporally controlled manner. This is achieved by trapping BMP-2 using physicochemical interactions, either covalently grafted or combined with other extracellular matrix components. In the near future, we anticipate that material science and biology will integrate and further develop tools for in vitro studies and potentially bring some of them toward in vivo applications.  相似文献   
3.
A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.  相似文献   
4.
5.
Receptor tyrosine kinases (RTKs) are single-span transmembrane receptors in which relatively conserved intracellular kinase domains are coupled to divergent extracellular modules. The extracellular domains initiate receptor signaling upon binding to either soluble or membrane-embedded ligands. The diversity of extracellular domain structures allows for coupling of many unique signaling inputs to intracellular tyrosine phosphorylation. The combinatorial power of this receptor system is further increased by the fact that multiple ligands can typically interact with the same receptor. Such ligands often act as biased agonists and initiate distinct signaling responses via activation of the same receptor. Mechanisms behind such biased agonism are largely unknown for RTKs, especially at the level of receptor–ligand complex structure. Using recent progress in understanding the structures of active RTK signaling units, we discuss selected mechanisms by which ligands couple receptor activation to distinct signaling outputs.  相似文献   
6.
The Wnt signaling pathway plays an important role in developmental processes, including embryonic patterning, cell specification, and cell polarity. Wnt components participate in the development of the central nervous system, and growing evidence indicates that this pathway also regulates the function of the adult nervous system. In this study, we report that Wnt-5a, a noncanonical Wnt ligand, is a potent activator of mitochondrial dynamics and induces acute fission and fusion events in the mitochondria of rat hippocampal neurons. The effect of Wnt-5a was inhibited in the presence of sFRP, a Wnt scavenger. Similarly, the canonical Wnt-3a ligand had no effect on mitochondrial fission-fusion events, suggesting that this effect is specific for Wnt-5a alone. We also show that the Wnt-5a effects on mitochondrial dynamics occur with an increase in both intracellular and mitochondrial calcium (Ca2+), which was correlated with an increased phosphorylation of Drp1(Ser-616) and a decrease of Ser-637 phosphorylation, both indicators of mitochondrial dynamics. Electron microscope analysis of hippocampal tissues in the CA1 region showed an increase in the number of mitochondria present in the postsynaptic region, and this finding correlated with a change in mitochondrial morphology. We conclude that Wnt-5a/Ca2+ signaling regulates the mitochondrial fission-fusion process in hippocampal neurons, a feature that might help to further understand the role of Wnt-related pathologies, including neurodegenerative diseases associated with mitochondrial dysfunction, and represents a potentially important link between impaired metabolic function and degenerative disorders.  相似文献   
7.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   
8.
NEK8 (never in mitosis gene A (NIMA)-related kinase 8) is involved in cytoskeleton, cilia, and DNA damage response/repair. Abnormal expression and/or dysfunction of NEK8 are related to cancer development and progression. However, the mechanisms that regulate NEK8 are not well declared. We demonstrated here that pVHL may be involved in regulating NEK8. We found that CAK-I cells with wild-type vhl expressed a lower level of NEK8 than the cells loss of vhl, such as 786-O, 769-P, and A-498 cells. Moreover, pVHL overexpression down-regulated the NEK8 protein in 786-O cells, whereas pVHL knockdown up-regulated NEK8 in CAK-I cells. In addition, we found that the positive hypoxia response elements (HREs) are located in the promoter of the nek8 sequence and hypoxia could induce nek8 expression in different cell types. Consistent with this, down-regulation of hypoxia-inducible factors α (HIF-1α or HIF-2α) by isoform-specific siRNA reduced the ability of hypoxia inducing nek8 expression. In vivo, NEK8 and HIF-1α expression were increased in kidneys of rats subjected to an experimental hypoxia model of ischemia and reperfusion. Furthermore, NEK8 siRNA transfection significantly blocked pVHL-knockdown-induced cilia disassembling, through impairing the pVHL-knockdown-up-regulated NEK8 expression. These results support that nek8 may be a novel hypoxia-inducible gene. In conclusion, our findings show that nek8 may be a new HIF target gene and pVHL can down-regulate NEK8 via HIFs to maintain the primary cilia structure in human renal cancer cells.  相似文献   
9.
Nucleocytoplasmic shuttling of Hxk2 induced by glucose levels has been reported recently. Here we present evidence that indicates that Hxk2 nucleocytoplasmic traffic is regulated by phosphorylation and dephosphorylation at serine 14. Moreover, we identified the protein kinase Snf1 and the protein phosphatase Glc7-Reg1 as novel regulatory partners for the nucleocytoplasmic shuttling of Hxk2. Functional studies revealed that, in contrast to the wild-type protein, the dephosphorylation-mimicking mutant of Hxk2 retains its nuclear localization in low glucose conditions, and the phosphomimetic mutant of Hxk2 retains its cytoplasmic localization in high glucose conditions. Interaction experiments of Hxk2 with Kap60 and Xpo1 indicated that nuclear import of the S14D mutant of Hxk2 is severely decreased but that the export is significantly enhanced. Conversely, nuclear import of the S14A mutant of Hxk2 was significantly enhanced, although the export was severely decreased. The interaction of Hxk2 with Kap60 and Xpo1 was found to occur in the dephosphorylated and phosphorylated states of the protein, respectively. In addition, we found that Hxk2 is a substrate for Snf1. Mutational analysis indicated that serine 14 is a major in vitro and in vivo phosphorylation site for Snf1. We also provide evidence that dephosphorylation of Hxk2 at serine 14 is a protein phosphatase Glc7-Reg1-dependent process. Taken together, this study establishes a functional link between Hxk2, Reg1, and Snf1 signaling, which involves the regulation of Hxk2 nucleocytoplasmic shuttling by phosphorylation-dephosphorylation of serine 14.  相似文献   
10.
Controlled generation of reactive oxygen species orchestrates numerous physiological signaling events (Finkel, T. (2011) Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15). A major cellular target of reactive oxygen species is the thiol side chain (RSH) of Cys, which may assume a wide range of oxidation states (i.e. −2 to +4). Within this context, Cys sulfenic (Cys-SOH) and sulfinic (Cys-SO2H) acids have emerged as important mechanisms for regulation of protein function. Although this area has been under investigation for over a decade, the scope and biological role of sulfenic/sulfinic acid modifications have been recently expanded with the introduction of new tools for monitoring cysteine oxidation in vitro and directly in cells. This minireview discusses selected recent examples of protein sulfenylation and sulfinylation from the literature, highlighting the role of these post-translational modifications in cell signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号