首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1978年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   
2.
We tested the hypothesis that the H2-based membrane biofilm reactor (MBfR) is capable of reducing multiple oxidized contaminants, a common situation for groundwater contamination. We conducted bench-scale experiments with three groundwater samples collected from California’s San Joaquin Valley and on two synthetic groundwaters containing selenate and chromate. The actual groundwater sources had nitrate levels exceeding 10 mg-N l−1 and different combinations of anthropogenic perchlorate + chlorate, arsenate, and dibromochloropropane (DBCP). For all actual groundwaters, the MBfR reduced nitrate to less than 0.01 mg-N l−1. Present in two groundwaters, perchlorate + chlorate was reduced to below the California Notification Level, 6 μg-ClO4 l−1. As(V) was substantially reduced to As(III) for two groundwaters samples, which had influent As(V) concentrations from 3 to 8.8 μg-As l−1. DBCP, present in one groundwater at 1.4 μg l−1, was reduced to below its detection limit of 0.01 μg l−1, which is well below California’s 0.2 μg l−1 MCL for DBCP. For the synthetic groundwaters, two MBfRs initially reduced Se(VI) or Cr(VI) stably to Se° or Cr(III). When we switched the influent oxidized contaminants, the new oxidized contaminant was reduced immediately, and its reduction soon was approximately the same or greater than it had been reduced in its original MBfR. These results support that the H2-based MBfR can reduce multiple oxidized contaminants simultaneously.  相似文献   
3.
Enterobacter cloacae SLD1a-1 is capable of the complete reduction of selenate to selenium and the initial reaction is catalysed by a membrane-bound selenate reductase. In the present study, continuous culture experiments were employed to investigate the possibility that selenate reduction, via the selenate reductase, might provide sufficient energy to maintain cell viability when deprived of the preferred anaerobic terminal electron acceptor nitrate. The evidence presented indicates that the selenate reductase supports slow growth that retards the wash-out of the culture when switching to nitrate-depleted selenate-rich medium, and provides a proton motive force for sustained cell maintenance. In contrast, a strain of E. cloacae (sub sp. cloacae) that does not readily reduce selenate, cannot sustain cell maintenance when switching to a selenate-rich medium. This work demonstrates for the first time that respiratory linked selenate reduction gives E. cloacae SLD1a-1 a selective advantage when inhabiting selenate-contaminated environments and highlights the suitability of utilising E. cloacae SLD1a-1 when developing selenium remediation strategies.  相似文献   
4.
Bacterial respiration of arsenic and selenium   总被引:21,自引:0,他引:21  
Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram-positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.  相似文献   
5.
Thauera selenatis was grown anaerobically in minimal medium with either selenate or nitrate as the terminal electron acceptor and acetate as the carbon source and electron donor. The molar cell protein yields, YM-protein (selenate) and YM-protein (nitrate), were found to be 7.8 g cell protein/mol selenite formed and 7.5 g cell protein/mol nitrite formed, respectively. These values represent YM values of 57 and 55 g (dry weight)/mol acetate when selenate or nitrate was the electron acceptor, respectively. Based upon a calculated YATP value of 10.0 g (dry weight) cells/mol ATP, for growth on acetate in inorganic salts, growth with selenate as the terminal electron acceptor theoretically yielded 5.7 ATP/acetate oxidized, and 5.5 ATP when nitrate was the terminal electron acceptor. The results support the conclusion that energy is conserved via electron transport phosphorylation when selenate or nitrate reduction are the terminal electron acceptors during anaerobic growth with acetate.  相似文献   
6.
Thauera selenatis grows anaerobically with selenate, nitrate or nitrite as the terminal electron acceptor; use of selenite as an electron acceptor does not support growth. When grown with selenate, the product was selenite; very little of the selenite was further reduced to elemental selenium. When grown in the presence of both selenate and nitrate both electron acceptors were reduced concomitantly; selenite formed during selenate respiration was further reduced to elemental selenium. Mutants lacking the periplasmic nitrite reductase activity were unable to reduce either nitrite or selenite. Mutants possessing higher activity of nitrite reductase than the wild-type, reduced nitrite and selenite more rapidly than the wild-type. Apparently, the nitrite reductase (or a component of the nitrite respiratory system) is involved in catalyzing the reduction of selenite to elemental selenium while also reducing nitrite. While periplasmic cytochrome C 551 may be a component of the nitrite respiratory system, the level of this cytochrome was essentially the same in mutant and wild-type cells grown under two different growth conditions (i.e. with either selenate or selenate plus nitrate as the terminal electron acceptors). The ability of certain other denitrifying and nitrate respiring bacteria to reduce selenite will also be described.  相似文献   
7.
Selenate reductase (SER) from Thauera selenatis is a periplasmic enzyme that has been classified as a type II molybdoenzyme. The enzyme comprises three subunits SerABC, where SerC is an unusual b-heme cytochrome. In the present work the spectropotentiometric characterization of the SerC component and the identification of redox partners to SER are reported. The mid-point redox potential of the b-heme was determined by optical titration (Em + 234 ± 10 mV). A profile of periplasmic c-type cytochromes expressed in T. selenatis under selenate respiring conditions was undertaken. Two c-type cytochromes were purified (∼24 and ∼6 kDa), and the 24-kDa protein (cytc-Ts4) was shown to donate electrons to SerABC in vitro. Protein sequence of cytc-Ts4 was obtained by N-terminal sequencing and liquid chromatography-tandem mass spectrometry analysis, and based upon sequence similarities, was assigned as a member of cytochrome c4 family. Redox potentiometry, combined with UV-visible spectroscopy, showed that cytc-Ts4 is a diheme cytochrome with a redox potential of +282 ± 10 mV, and both hemes are predicted to have His-Met ligation. To identify the membrane-bound electron donors to cytc-Ts4, growth of T. selenatis in the presence of respiratory inhibitors was monitored. The specific quinol-cytochrome c oxidoreductase (QCR) inhibitors myxothiazol and antimycin A partially inhibited selenate respiration, demonstrating that some electron flux is via the QCR. Electron transfer via a QCR and a diheme cytochrome c4 is a novel route for a member of the DMSO reductase family of molybdoenzymes.  相似文献   
8.
9.
细菌还原氧化态硒产生红色单质硒的研究进展   总被引:3,自引:0,他引:3  
硒是一种生命必需的微量元素,但高浓度时毒性较强且会造成环境污染。许多细菌可以将亚硒酸盐(SeO32-)或硒酸盐(SeO42-)等毒性较高的氧化态硒还原为毒性较小的红色单质硒(Se°),形成硒-蛋白复合物,它们对于获得最佳补硒方式和治理硒环境污染具有应用潜力。近年来,关于这一生物还原过程,人们进行了大量的研究,包括碳源、氧气、元素硫、谷胱甘肽以及一些氧化还原酶和膜转运蛋白等在内的多种物质都被发现可能影响或参与了细菌对硒的代谢。综述了细菌进行生物还原氧化态硒的影响因素及不同细菌产生红色单质硒机理的研究进展。  相似文献   
10.
The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Salmonella enterica serovar Typhimurium and Escherichia coli many Tat substrates are known or predicted to bind a molybdenum cofactor in the cytoplasm prior to export. In the case of N- and S-oxide reductases, co-ordination of molybdenum cofactor insertion with protein export involves a ‘Tat proofreading’ process where chaperones of the TorD family bind the signal peptides, thus preventing premature export. Here, a genetic approach was taken to determine factors required for selenate reductase activity in Salmonella and E. coli. It is reported for both biological systems that an active Tat translocase and a TorD-like chaperone (DmsD) are required for complete in vivo reduction of selenate to elemental red selenium. Further mutagenesis and in vitro biophysical experiments implicate the Salmonella ynfE gene product, and the E. coli YnfE and YnfF proteins, as putative Tat-targeted selenate reductases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号