首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   9篇
  国内免费   6篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   8篇
  2013年   19篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   7篇
  2008年   14篇
  2007年   10篇
  2006年   6篇
  2005年   10篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   6篇
  1999年   11篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   9篇
  1990年   8篇
  1989年   6篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
排序方式: 共有227条查询结果,搜索用时 15 毫秒
1.
《Cell reports》2020,30(5):1373-1384.e4
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   
2.
Abstract The 3D gene of foot-and-mouth disease virus encodes the viral RNA dependent RNA polymerase, also called virus infection associated (VIA) antigen, which is the most important serological marker of virus infection. This 3D gene from a serotype Cl virus has been cloned and overexpressed in Escherichia coli under the control of the strong lambda lytic promoters. The resulting 51 kDa recombinant protein has been shown to be immunoreactive with sera from infected animals. After induction of gene expression, an immediate and dramatic arrest of cell DNA synthesis occurs, similar to that produced by genotoxic doses of the drug mitomycin C. This effect does not occur during the production of either a truncated VIA antigen or other related and non-related viral proteins. The inhibition of DNA replication results in a subsequent induction of the host SOS DNA-repair response and in an increase of the mutation frequency in the surviving cells.  相似文献   
3.
Summary By using an artificial hybrid between phage and the pR plasmid, we have shown that the rep region of the pR plasmid encodes a function which regulates the expression of the muc genes (plasmid genes that are under the negative control of lexA and responsible for an increased rate of spontaneous mutagenesis and resistance to UV and chemicals). Expression of the muc genes was monitored by a fusion between the muc promoter and the lacZ structural gene. When E. coli cells containing such a fusion are infected by the hybrid pR phasmid, -galactosidase activity is enhanced, indicating that pR encodes an antagonist of lexA. By deletion mapping we have located the gene encoding the antagonist of lexA (bat) in the rep region of the plasmid. The bat gene product can also antagonize the cI repressor as shown by the observation that pR phasmids are virulent on a homoimmune lysogen. We have exploited this latter property to carry out genetic and functional analysis of the bat region. This region is organized as a classical operon where the expression of the bat structural gene is negatively regulated by a repressor gene that encodes a proteic product.  相似文献   
4.
Summary The ruv operon of Escherichia coli consists of two genes, orfl1 and ruv, which encode 22 and 37 kilodalton proteins, respectively, and are regulated by the SOS system. Although the distal gene, ruv, is known to be involved in DNA repair, the function of orf1 has not been studied. To examine whether orf1 is also involved in DNA repair, we constructed a strain with a deletion of the entire ruv operon. The strain was sensitive to UV even after introduction of low copy number plasmids carrying either orf1 or ruv, but UV resistance was restored by introduction of a plasmid carrying both orfl and ruv. These results suggest that orf1 as well as ruv is involved in DNA repair. Therefore, orf1 and ruv should be renamed ruvA and ruvB, respectively.  相似文献   
5.
Summary Most of the inducible mutagenesis observed in Escherichia coli after treatment with many DNA damaging agents is dependent upon the products of the umuD,C operon. RecA-mediated proteolytic processing of UmuD yields a carboxyl-terminal fragment (UmuD) that is active for mutagenesis. Processing of UmuD is therefore a critical step in the fixation of mutations. In this paper we have analyzed the requirements for UmuD processing in vivo. Standard immuno-detection assays, coupled with a sensitive chemiluminescence detection assay, have been utilized to probe levels of chromosomally encoded Umu proteins from whole-cell E. coli extracts. We found that the derepression of additional SOS gene products, other than RecA, was not required for UmuD processing. Moreover, efficient cleavage of UmuD was observed only in the presence of elevated levels of activated RecA, suggesting that efficient processing would occur only under conditions of severe DNA damage. Detection of chromosomally encoded Umu proteins has allowed us, for the first time, to measure directly the cellular steady-state levels of these proteins under various SOS inducing conditions. UmuD was present at 180 copies per uninduced cell and was measured at 2400 copies per cell in strains that lacked a functional repressor. Induced levels of UmuC were approximately 12-fold lower than UmuD with 200 molecules per cell. These levels of cellular UmuC protein suggest that it functions through specific protein-DNA or protein-protein interactions, possibly as a lesion recognition protein or by interacting with DNA polymerase III.  相似文献   
6.
Summary The dnaQ (mutD) gene product which encodes the -subunit of the DNA polymerase III holoenzyme has a central role in controlling the fidelity of DNA replication because both mutD5 and dnaQ49 mutations severely decrease the 3–5 exonucleolytic editing capacity.It is shown in this paper that more than 95% of all anaQ49-induced base pair substitutions are transversions of the types G:C-T:A and A:T-T:A. Not only is this unusual mutational specificity precisely that observed recently for a number of potent carcinogens such as benzo(a) pyrene diolepoxide (BPDE) and aflatoxin B1 (AFB1), which are dependent on the SOS system to mutagenize bacteria, but it is also seen for the constitutively expressed SOS mutator activity in E. coli tif-1 strains as well as for the SOS mutator activity mediated gap filling of apurinic sites. Because the G:C-T:A and A:T-T:A transversions can either result from the insertion of an adenine across from apurinic sites or arise due to the incorporation of syn-adenine opposite a purine base, we postulate that the DNA polymerase III holoenzyme also has a reduced discrimination ability in a dnaQ49 background.The introduction of a lexA (Ind-) allele, which prevents the expression of SOS functions, led to a significant reduction in the dnaQ49-caused mutator effect.Both, the mutational specificity observed and the partial lexA + dependence of the mutator effect provoke a reanalysis of the hypothesis that the DNA polymerase III holoenzyme can be converted into the postulated but until now unidentified SOS polymerase.  相似文献   
7.
我们在前文中报道由整合的F'质粒所发动的大肠杆菌染色体的复制依赖于recA基因。本文报道有关recA、recB、recC以及lexA等在染色体复制中的作用,实验结果说明,recA基因通过同源重组途径而不是通过SOS途径参与复制,而且recA基因和Chi热点无关。实验结果还说明,RecBC酶的依赖于ATP的双链DNA外切核酸酶活性和recA基因的作用无关。  相似文献   
8.
9.
10.
Vanillin and its isomer o-vanillin have an effect on the adaptive and SOS responses, as well as mutagenesis, induced in Escherichia coli by N-methyl-N-nitrosourea (MNU) and UV irradiation, potentiating in some cases and suppressing in others. o-Vanillin markedly inhibited the MNU-induced adaptive response, while both vanillins potentiated the UV-induced SOS response. These phenomena appear to be responsible for the comutagenic or antimutagenic role of these chemicals in MNU and UV mutagenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号