首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   5篇
  国内免费   3篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   7篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
排序方式: 共有58条查询结果,搜索用时 218 毫秒
1.
Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)‐positive sorting endosomes that promotes the efficient recycling of low‐density lipoprotein receptor‐related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1‐positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17‐binding domain, we generated chimeric proteins in which the SNX17‐binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non‐polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin‐Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17‐binding receptors and the restricted function of SNX17 in the BSE .   相似文献   
2.
《Autophagy》2013,9(10):1639-1641
The role of membrane remodeling and phosphoinositide-binding proteins in autophagy remains elusive. PX domain proteins bind phosphoinositides and participate in membrane remodeling and trafficking events and we therefore hypothesized that one or several PX domain proteins are involved in autophagy. Indeed, the PX-BAR protein SNX18 was identified as a positive regulator of autophagosome formation using an image-based siRNA screen. We show that SNX18 interacts with ATG16L1 and LC3, and functions downstream of ATG14 and the class III PtdIns3K complex in autophagosome formation. SNX18 facilitates recruitment of ATG16L1 to perinuclear recycling endosomes, and its overexpression leads to tubulation of ATG16L1- and LC3-positive membranes. We propose that SNX18 promotes LC3 lipidation and tubulation of recycling endosomes to provide membrane for phagophore expansion.  相似文献   
3.
4.
The plant toxin ricin is transported from the plasma membrane via early endosomes and the Golgi apparatus to the endoplasmic reticulum. From this compartment, it enters the cytosol and inhibits protein synthesis. Lipid phosphorylation is an important regulator of vesicular transport, and in the present study we have investigated the role of the phosphatidylinositol (PI) 3-kinase hVps34 in retrograde transport of ricin. Our data demonstrate that transport of ricin from endosomes to the Golgi apparatus in human embryonic kidney cells (HEK 293) is dependent on PI(3)P. By using PI 3-kinase inhibitors, by sequestering the hVps34 product PI(3)P and by expressing mutants of hVps34 or small interfering RNA targeted against its messenger RNA, we show that hVps34 and its product PI(3)P are involved in transport of ricin from endosome to Golgi apparatus. Furthermore, we identify two effector proteins in the hVps34-dependent pathway, namely sorting nexin (SNX) 2 and SNX4. Knockdown of SNX2 or SNX4 inhibits ricin transport to the Golgi apparatus to the same extent as when hVps34 is perturbed. Furthermore, inhibition or knockdown of hVps34 redistributes these proteins. Interestingly, knocking down both SNX2 and SNX4 results in a better inhibition than knocking down only one of them, suggesting that they may act on separate pathways.  相似文献   
5.
The sorting nexins (SNXs) are a family of PX domain-containing proteins found in yeast and mammalian cells that have been proposed to regulate intracellular trafficking. Mammalian SNXs have been suggested to function variously in pro-degradative sorting, internalization, endosomal recycling, or simply in endosomal sorting. In yeast, the defining function for these proteins is a regulation of cargo retrieval. Here we examine recent data on the SNX family of proteins and attempt to draw out unifying themes between the work performed in yeast and mammalian systems.  相似文献   
6.
It is widely recognized that after endocytosis, internalized cargo is delivered to endosomes that act as sorting stations. The limiting membrane of endosomes contain specialized subregions, or microdomains, that represent distinct functions of the endosome, including regions competing for cargo capture leading to degradation or recycling. Great progress has been made in defining the endosomal protein coats that sort cargo in these domains, including Retromer that recycles transmembrane cargo, and ESCRT (endosomal sorting complex required for transport) that degrades transmembrane cargo. In this review, we discuss recent work that is beginning to unravel how such coat complexes contribute to the creation and maintenance of endosomal microdomains. We highlight data that indicates that adjacent microdomains do not act independently but rather interact to cross-regulate. We posit that these interactions provide an agile means for the cell to adjust sorting in response to extracellular signals and intracellular metabolic cues.  相似文献   
7.
CASP is a small cytokine-inducible protein, primarily expressed in hematopoetic cells, which associates with members of the Cytohesin/ARNO family of guanine nucleotide-exchange factors. Cytohesins activate ARFs, a group of GTPases involved in vesicular initiation. Functionally, CASP is an adaptor protein containing a PDZ domain, a coiled-coil, and a potential carboxy terminal PDZ-binding motif that we sought to characterize here. Using GST pulldowns and mass spectrometry we identified the novel interaction of CASP and sorting nexin 27 (SNX27). In lymphocytes, CASP's PDZ-binding motif interacts with the PDZ domain of SNX27. This protein is a unique member of the sorting nexin family of proteins, a group generally involved in the endocytic and intracellular sorting machinery. Endogenous SNX27 and CASP co-localize at the early endosomal compartment in lymphocytes and also in transfection studies. These results suggest that endosomal SNX27 may recruit CASP to orchestrate intracellular trafficking and/or signaling complexes.  相似文献   
8.
Sorting nexins(SNXs)是一类含有SNX-PX结构域,并在细胞内吞和内体分选运输过程中发挥重要调节作用的蛋白。SNX7是SNXs家族中的一员,含有PX结构域和BAR结构域,属于SNX-PX-BAR亚家族。斑马鱼实验表明,SNX7是在肝脏中大量表达的抗凋亡蛋白,并在胚胎肝脏的发育中发挥关键作用。为了从蛋白水平对SNX7进行研究,首先将编码人源PX-BARSNX7(SNX7的一个片段,包含PX和BAR结构域)的cDNA片段插入到原核表达载体p28a中,再将重组质粒转化到大肠杆菌Rosseta 2(DE3)中诱导表达,并用亲和层析、离子交换和分子筛层析对PX-BARSNX7进行了纯化。Western blotting结果表明,亲和层析、离子交换和分子筛层析纯化后获得了高纯度的PX-BARSNX7蛋白。动态光散射实验显示PX-BARSNX7蛋白均一性良好。磷脂结合实验表明,PX-BARSNX7具有较为广泛的磷脂酰肌醇结合能力,能够与PtdIns(5)P、PtdIns(4,5)P2和PtdIns(3,4,5)P3结合。  相似文献   
9.
The endosomal compartment is a major sorting station controlling the balance between endocytic recycling and lysosomal degradation, and its homeostasis is emerging as a central factor in various neurodegenerative diseases such as Alzheimer's and Parkinson's. Membrane trafficking is generally coordinated by the recognition of specific signals in transmembrane protein cargos by different transport machineries. A number of different protein trafficking complexes are essential for sequence-specific recognition and retrieval of endosomal cargos, recycling them to other compartments and acting to counter-balance the default endosomal sorting complex required for transport–mediated degradation pathway. In this review, we provide a summary of the key endosomal transport machineries, and the molecular mechanisms by which different cargo sequences are specifically recognised.  相似文献   
10.
Trafficking of mammalian ATG9A between the Golgi apparatus, endosomes and peripheral ATG9A compartments is important for autophagosome biogenesis. Here, we show that the membrane remodelling protein SNX18, previously identified as a positive regulator of autophagy, regulates ATG9A trafficking from recycling endosomes. ATG9A is recruited to SNX18‐induced tubules generated from recycling endosomes and accumulates in juxtanuclear recycling endosomes in cells lacking SNX18. Binding of SNX18 to Dynamin‐2 is important for ATG9A trafficking from recycling endosomes and for formation of ATG16L1‐ and WIPI2‐positive autophagosome precursor membranes. We propose a model where upon autophagy induction, SNX18 recruits Dynamin‐2 to induce budding of ATG9A and ATG16L1 containing membranes from recycling endosomes that traffic to sites of autophagosome formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号