首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2007年   1篇
  1997年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有19条查询结果,搜索用时 554 毫秒
1.
The aim of this study was to determine the mechanism underlying the association between one‐carbon metabolism and DNA methylation during chronic degenerative joint disorder, osteoarthritis (OA). Articular chondrocytes were isolated from human OA cartilage and normal cartilage biopsied, and the degree of cartilage degradation was determined by safranin O staining. We found that the expression levels of SHMT‐2 and MECP‐2 were increased in OA chondrocytes, and 3′UTR reporter assays showed that SHMT‐2 and MECP‐2 are the direct targets of miR‐370 and miR‐373, respectively, in human articular chondrocytes. Our experiments showed that miR‐370 and miR‐373 levels were significantly lower in OA chondrocytes compared to normal chondrocytes. Overexpression of miR‐370 or miR‐373, or knockdown of SHMT‐2 or MECP‐2 reduced both MMP‐13 expression and apoptotic cell death in cultured OA chondrocytes. In vivo, we found that introduction of miR‐370 or miR‐373 into the cartilage of mice that had undergone destabilization of the medial meniscus (DMM) surgery significantly reduced the cartilage destruction in this model, whereas introduction of SHMT‐2 or MECP‐2 increased the severity of cartilage destruction. Together, these results show that miR‐370 and miR‐373 contribute to the pathogenesis of OA and act as negative regulators of SHMT‐2 and MECP‐2, respectively.  相似文献   
2.
从产L-丝氨酸菌株假单胞菌N-13中纯化了丝氨酸羟甲基转移酶,并对其性质进行了研究.结果表明,丝氨酸羟甲基转移酶酶活力在pH=7.0~9.0间稳定,最适宜pH=8.0;酶的最适温度为35℃,在30~40℃水浴30 min酶活力未见明显下降.磷酸吡哆醛的最适添加浓度为25 μmol·L-1.研究了不同金属离子对酶活力的影...  相似文献   
3.
Serine hydroxymethyltransferase 1 (SHMT1) expression limits rates of de novo dTMP synthesis in the nucleus. Here we report that SHMT1 is ubiquitinated at the small ubiquitin-like modifier (SUMO) consensus motif and that ubiquitination at that site is required for SHMT1 degradation. SHMT1 protein levels are cell cycle-regulated, and Ub-SHMT1 levels are lowest at S phase when SHMT1 undergoes SUMO modification and nuclear transport. Mutation of the SUMO consensus motif increases SHMT1 stability. SHMT1 interacts with components of the proteasome in both the nucleus and cytoplasm, indicating that degradation occurs in both compartments. Ubc13-mediated ubiquitination is required for SHMT1 nuclear export and increases stability of SHMT1 within the nucleus, whereas Ubc9-mediated modification with Sumo2/3 is involved in nuclear degradation. These data demonstrate that SUMO and ubiquitin modification of SHMT1 occurs on the same lysine residue and determine the localization and accumulation of SHMT1 in the nucleus.  相似文献   
4.
利用插入失活及营养缺陷型互补法将大肠杆菌K12 13kb的glyA基因克隆到质粒pBR329中。将重组质粒酶切,亚克隆,确定2.6kb PstI-EcoRI亚克隆片段带有完整的glyA基因。共获得12株glyA基因重组菌,对重组质粒进行了酶切鉴定。不同重组菌丝氨酸羟甲基转移酶(SHMT)活性及其酶表达量均不相同。受体菌未检测到丝氨酸的产生。重组菌株JM109(pSM13)、K12(pSM13)、K12(pSM14)和K12(pSM15)SHMT酶表达量分别占全菌可溶性蛋白的15.7%、15.4%、11.8%和9.48%。  相似文献   
5.
《Cell metabolism》2020,31(4):809-821.e6
  1. Download : Download high-res image (111KB)
  2. Download : Download full-size image
  相似文献   
6.
Environmental variables such as pH can significantly influence the folding and stability of a protein molecule. In the present investigation, we compared the alkaline pH-induced unfolding of two homologous serine hydroxymethyltransferase from mesophilic Bacillus subtilis (bsSHMT) and thermophilic Bacillus stearothermophilus (bstSHMT) using various biophysical techniques. The thermophilic enzyme bstSHMT was found to be more resistant to alkaline denaturation compared to its mesophilic counterpart, bsSHMT. Unfolding studies using domain-swapped chimera, constructed by swapping the C-terminal domain of these two wild-type proteins, revealed that C-terminal domain plays a pivotal role in the folding, stability and subunit interaction of these proteins. Primary amino acid sequence analysis of the proteins showed that bsSHMT has six unconserved lysine residues in C-terminal domain, which are absent in bstSHMT. Chemical modification of lysine side chains resulted in stabilization of monomers, only in case of bsSHMT. Moreover, comparison between homology model of bsSHMT with the crystal structure of bstSHMT revealed that a small stretch of 11 amino acids at the end of C-terminal domain was found protruding outside the molecule as a flexible coiled structure in bsSHMT. Taken together these findings suggest that possibly the presence of these non-identical lysine moieties and a small extension of C-terminal domain may be responsible for low stability of bsSHMT under alkaline pH condition.  相似文献   
7.
Hasse D  Mikkat S  Thrun HA  Hagemann M  Bauwe H 《FEBS letters》2007,581(7):1297-1301
The multi-enzyme complex glycine decarboxylase is important for one-carbon metabolism, essential for the photorespiratory glycolate cycle of plants, and comprises four different polypeptides, P-, H-, T-, and L-protein. We report on the production and properties of recombinant P-protein from the cyanobacterium Synechocystis and also describe features of recombinant H-protein from the same organism. The P-protein shows enzymatic activity with lipoylated H-protein and very low activity with H-apoprotein or lipoate as artificial cofactors. Its affinity towards glycine is unaffected by the presence and nature of the methyleneamine acceptor molecule. The cyanobacterial H-protein apparently forms stable dimers.  相似文献   
8.
Uracil accumulates in DNA as a result of impaired folate-dependent de novo thymidylate biosynthesis, a pathway composed of the enzymes serine hydroxymethyltransferase (SHMT), thymidylate synthase (TYMS), and dihydrofolate reductase. In G1, this pathway is present in the cytoplasm and at S phase undergoes small ubiquitin-like modifier-dependent translocation to the nucleus. It is not known whether this pathway functions in the cytoplasm, nucleus, or both in vivo. SHMT1 generates 5,10-methylenetetrahydrofolate for de novo thymidylate biosynthesis, a limiting step in the pathway, but also tightly binds 5-methyltetrahydrofolate in the cytoplasm, a required cofactor for homocysteine remethylation. Overexpression of SHMT1 in cell cultures inhibits folate-dependent homocysteine remethylation and enhances thymidylate biosynthesis. In this study, the impact of increased Shmt1 expression on folate-mediated one-carbon metabolism was determined in mice that overexpress the Shmt1 cDNA (Shmt1tg+ mice). Compared with wild type mice, Shmt1tg+ mice exhibited elevated SHMT1 and TYMS protein levels in tissues and evidence for impaired homocysteine remethylation but surprisingly exhibited depressed levels of nuclear SHMT1 and TYMS, lower rates of nuclear de novo thymidylate biosynthesis, and a nearly 10-fold increase in uracil content in hepatic nuclear DNA when fed a folate- and choline-deficient diet. These results demonstrate that SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in nuclear DNA and indicate that SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity.  相似文献   
9.
Understanding in vivo regulation of photoautotrophic metabolism is important for identifying strategies to improve photosynthetic efficiency or re-route carbon fluxes to desirable end products. We have developed an approach to reconstruct comprehensive flux maps of photoautotrophic metabolism by computational analysis of dynamic isotope labeling measurements and have applied it to determine metabolic pathway fluxes in the cyanobacterium Synechocystis sp. PCC6803. Comparison to a theoretically predicted flux map revealed inefficiencies in photosynthesis due to oxidative pentose phosphate pathway and malic enzyme activity, despite negligible photorespiration. This approach has potential to fill important gaps in our understanding of how carbon and energy flows are systemically regulated in cyanobacteria, plants, and algae.  相似文献   
10.
A plasmid containing the glyA gene of Salmonella typhimurium LT2 was constructed in vitro using plasmid pACYC184 as the cloning vector and a λgt7-glyA transducing phage as the source of glyA DNA. The recombinant plasmid (pGS30) contains a 10-kb EcoRI insert fragment. Genetic and biochemical experiments established that the fragment contains a functional glyA gene. From plasmid pGS30 we subcloned a 4.4-kb SalI-EcoRI fragment containing the glyA gene and its neighboring regions (plasmid pGS38). The location and orientation of the glyA gene within the 4.4-kb insert fragment was determined in four ways: (1) comparison of the physical map of the 4.4-kb SalI-EcoRI fragment with the physical map of a 2.6-kb SalI-PvuII fragment that carries the Escherichia coli glyA gene; (2) deletion analysis; (3) transposon Tn5 insertional inactivation experiments; (4) deoxyribonucleic acid sequencing and comparison of the S. typhimurium DNA sequence with the E. coli DNA sequence. A presumptive glyA-encoded polypeptide of Mr 47000 was detected using plasmid pGS38 as template in a minicell system, but not when the glyA gene was inactivated by insertion of a Tn5 element.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号