首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
  2014年   1篇
  2011年   1篇
  2009年   4篇
  2007年   4篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1977年   1篇
  1976年   2篇
排序方式: 共有52条查询结果,搜索用时 17 毫秒
1.
Light-independent chlorophyll (Chl) biosynthesis is a prerequisite for the assembly of photosynthetic pigment–protein complexes in the dark. Dark-grown Larix decidua Mill. seedlings synthesize Chl only in the early developmental stages and their Chl level rapidly declines during the subsequent development. Our analysis of the key regulatory steps in Chl biosynthesis revealed that etiolation of initially green dark-grown larch cotyledons is connected with decreasing content of glutamyl-tRNA reductase and reduced 5-aminolevulinic acid synthesizing capacity. The level of the Chl precursor protochlorophyllide also declined in the developing larch cotyledons. Although the genes chlL, chlN and chlB encoding subunits of the light-independent protochlorophyllide oxidoreductase were constitutively expressed in the larch seedlings, the accumulation of the ChlB subunit was developmentally regulated and ChlB content decreased in the fully developed cotyledons. The efficiency of chlB RNA-editing was also reduced in the mature dark-grown larch seedlings. In contrast to larch, dark-grown seedlings of Picea abies (L.) Karst. accumulate Chl throughout their whole development and show a different control of ChlB expression. Analysis of the plastid ultrastructure, photosynthetic proteins by Western blotting and photosynthetic parameters by gas exchange and Chl fluorescence measurements provide additional experimental proofs for differences between dark and light Chl biosynthesis in spruce and larch seedlings.  相似文献   
2.
Unlike other oilseeds (e.g. Arabidopsis), developing sunflower seeds do not accumulate a lot of starch and they rely on the sucrose that comes from the mother plant to synthesise lipid precursors. Between 10 and 25 days after flowering (DAF), when sunflower seeds form and complete the main period of storage lipid synthesis, the sucrose content of seeds is relatively constant. By contrast, the glucose and fructose content falls from day 20 after flowering and it is always lower than that of sucrose, with glucose being the minor sugar at the end of the seed formation. By studying the apparent kinetic parameters and the activity of glycolytic enzymes in vitro, it is evident that all the components of the glycolytic pathway are present in the crude seed extract. However, in isolated plastids important enzymatic activities are missing, such as the glyceraldehyde-3-phosphate dehydrogenase, involved in the conversion of glyceraldehyde 3-phosphate into 1,3-biphospho-glycerate, or the enolase that converts 2-phosphoglycerate into phosphoenolpyruvate. Hence, phosphoenolpyruvate or one of its derivatives, like pyruvate and malate from the cytosol, may be the primary carbon sources for lipid biosynthesis. Accordingly, the glucose-6-P imported into the plastid is likely to be used in the pentose phosphate pathway to produce the reducing power for lipid biosynthesis in the form of NADPH. Data from crude seed extracts indicate that enolase activity increased during seed formation, from 16 days after flowering, and that this activity was well correlated with the period of storage lipid synthesis. In addition, while the presence of some glycolytic enzymes increased during lipid synthesis, others decreased, remained constant, or displayed irregular temporal behaviour.  相似文献   
3.
4.
5.
A stress-induced "mycosome" phase of Aureobasidium pullulans consisting of minute reproductive propagules that may revert directly to walled yeast cells is described. Mycosomes detected by light- and electron-microscopy reproduce within senescent plant plastids, and display three developmental pathways: wall-less cells (protoplasts), yeast cells, or membrane-bounded spherules that harbor plastids. Widespread in plant and algal cells, mycosomes are produced by both ascomycete and basidiomycete fungi. Electronic Publication  相似文献   
6.
Isozymes of hexose-phosphate isomerase (HPI; EC 5.3.1.9), pyruvate kinase (PK; EC 2.7.1.40) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) have been detected in the developing cotyledons of soybean (Glycine max (L.) Merr.), safflower (Carthamnus tinctorius L.) and sunflower (Helianthus annuus L.). In each seed there are two isozymes each of PK and HPI. The isozyme patterns of 6PGDH are more complex: soybean has two forms of the enzyme, safflower three, and sunflower six. In each tissue, at least 25% of the activity of each of the three enzymes is in the plastids. This supports the proposal that the glycolytic and pentose-phosphate pathways are operating in the plastids and that the plastids are the site of long-chain fatty-acid biosynthesis in developing oilseeds.Abbreviations HPI hexose-phosphate isomerase - 6PGDH 6-phosphogluconate dehydrogenase - PK pyruvate kinase  相似文献   
7.
Toxic marine dinoflagellate species of the genus Dinophysis Ehrenberg are obligate mixotrophs that require feeding on the ciliate Mesodinium rubrum and light to achieve growth. It is now well known that they harbour plastids of cryptophyte origin, particularly of the genus Teleaulax, Plagioselmis or Geminigera group (TPG clade). Nevertheless, whether these plastids are permanent, or periodically acquired from M. rubrum prey, need additional studies in different phototrophic Dinophysis species. The origin of plastids from Dinophysis acuta Ehrenberg, one of the main agents of diarrhetic shellfish poisoning (DSP) outbreaks in Western Europe, was investigated here. Cross feeding-starvation experiments were carried out with cultures of D. acuta using M. rubrum as prey, the latter fed with two cryptophyte species, Teleaulax amphioxeia Hill and Teleaulax gracilis, belonging to the TPG clade in addition to Falcomonas sp. and Hemiselmis sp. The fate of cryptophyte plastids transferred to D. acuta through its ciliate prey was investigated using the plastid psbA gene as a tracer.  相似文献   
8.
Summary The distributions are given of gene frequencies among embryos after G X W and W X G plastid crosses within and between eight Pelargonium cultivars and some of their inbred or hybrid derivatives.Two distinct segregation patterns are recognized. Homozygous type I female parents (Pr1Pr1) have a high frequency of progeny with only maternal alleles, are intermediate for biparental and low for paternal offspring. Heterozygous type II female plants (Pr1Pr2) have an equally high frequency of maternal and paternal offspring and a generally low biparental frequency. These correspond to L-shaped and U-shaped gene frequency distributions respectively in which the only modes are at 0 per cent (maternal embryos) and 100 per cent (paternal embryos), with no mode corresponding to the population mean and no sign of a Gaussian distribution.The extremely variable plastid gene frequencies are strongly influenced by the maternal nuclear genotype and by the plastid genotype in which the wild-type allele is always more successful than the mutant in strict comparisons.The relative frequencies of maternal and paternal zygotes, and the mean gene frequency among all the zygotes in a cross, are explicable in terms of the input frequencies of genes from the two parents, their degree of mixing, and by some form of selective replication of plastids. This selection is controlled by nuclear and plastid genotypes which may act in the same direction, to increase the frequency of either the maternal or the paternal alleles, or in opposition. But selection alone is inadequate to explain the shapes of the gene frequency distributions. Instead, a model is proposed in which the segregation or replication of plastids appears to have a strong random element, which results in random drift of gene frequencies within a heteroplasmic zygote or embryo.  相似文献   
9.
G. Wanner  H. Formanek  R. R. Theimer 《Planta》1981,151(2):109-123
Maturing embryos of 16 oil plants, anise suspension culture cells, and Neurospora crassa cells were prepared for electron microscopy at different stages during massive lipid accumulation. Lipid-rich structures of certain species were best preserved by dehydration of fixed tissues in ethanol without propylene oxide, embedding in Spurr's Medium, and polymerization at room temperature. In all cells examined, spherical lipid bodies (spherosomes) showed a moderately osmiophilic, amorphous matrix and displayed a delimiting half-unit membrane when sectioned medially. Associations with the endoplasmic reticulum (ER) were viewed at any stage during lipid body development but with different frequency in the different plant species. Plastids of fat-storing cells exhibited conspicuously undulate outer and inner envelope membranes that formed multiple contact sites with each other and protuberances into both cytoplasm and stroma. Some species, e.g., Linum, have plastids with tubular structures that connect the inner membrane to the thylakoid system; in addition, in the stroma vesicles fusing with or apparently passing through the envelope were observed. The outer envelope membrane may be associated with ER-like cytoplasmic membrane structures. In addition, lipid bodies of various sizes were found in contact with the plastid envelope. The ultrastructural observations are interpreted to match the published biochemical evidence, indicating that both plastids and ER may be involved in the synthesis of storage lipids and lipid body production.  相似文献   
10.
Root plastids of the cultivated tomato Lycopersicon esculentum (Lem) exhibited salt-induced oxidative stress as indicated by the increased H 2 O 2 and lipid peroxidation levels which were accompanied with increased contents of the oxidized forms of ascorbate and glutathione. In contrast, H 2 O 2 level decreased, lipid peroxidation level slightly decreased and the levels of the reduced forms of ascorbate and glutathione increased in plastids of L. pennellii (Lpa) species in response to salinity. This better protection of Lpa root plastids from salt-induced oxidative stress was correlated with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (POD), monodehydroascorbate reductase (MDHAR), glutathione peroxidase (GPX), glutathione- S -transferase (GST) and phospholipid hydroperoxide glutathione peroxidase (PHGPX). In the plastids of both species, activities of SOD, APX, and POD could be resolved into several isozymes. In Lem plastids two Cu/ZnSOD isozymes were found whereas in Lpa an additional FeSOD type could also be detected. In response to salinity, activities of selected SOD, APX, and POD isozymes were increased in Lpa, while in Lem plastids the activities of most of SOD and POD isozymes decreased. Taken together, it is suggested that plastids play an important role in the adaptation of Lpa roots to salinity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号