首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2716篇
  免费   27篇
  国内免费   55篇
  2023年   46篇
  2022年   36篇
  2021年   53篇
  2020年   66篇
  2019年   80篇
  2018年   102篇
  2017年   60篇
  2016年   47篇
  2015年   31篇
  2014年   156篇
  2013年   265篇
  2012年   120篇
  2011年   168篇
  2010年   129篇
  2009年   118篇
  2008年   140篇
  2007年   122篇
  2006年   101篇
  2005年   103篇
  2004年   77篇
  2003年   60篇
  2002年   39篇
  2001年   9篇
  2000年   11篇
  1999年   11篇
  1998年   14篇
  1997年   17篇
  1996年   23篇
  1995年   33篇
  1994年   31篇
  1993年   29篇
  1992年   35篇
  1991年   36篇
  1990年   30篇
  1989年   20篇
  1988年   17篇
  1987年   11篇
  1986年   15篇
  1985年   45篇
  1984年   59篇
  1983年   43篇
  1982年   42篇
  1981年   27篇
  1980年   21篇
  1979年   22篇
  1978年   16篇
  1977年   11篇
  1976年   18篇
  1974年   14篇
  1973年   9篇
排序方式: 共有2798条查询结果,搜索用时 46 毫秒
1.
Andreas Barth 《BBA》2007,1767(9):1073-1101
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.  相似文献   
2.
《Cell》2021,184(26):6281-6298.e23
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   
3.
Free fatty acid receptor 1 (FFAR1) is a member of a previously characterized cluster of orphan G protein-coupled receptors (GPCRs). Later, this orphan receptor was identified as a target of medium- to long-chain free fatty acids in β-cells of the pancreas. Administration of FFAR1 agonists has been proved to potentiate glucose-stimulated insulin secretion from pancreatic β-cells. It was reported that some thiazolidinediones (TZDs), the best studied PPARγ agonists, are also able to stimulate FFAR1 in a dose-dependent manner. In the present study, a homology model of the human FFAR1 was constructed and inserted into a pre-equilibrated DPPC/TIP3P membrane system. This system was then simulated for 20 ns in complex with the FFAR1 agonist GW9085, as well as rosiglitazone and pioglitazone. We noticed that the salt bridge between Glu172 and Arg258 and the H bond between Glu145 and His153 could be responsible for the stabilization of the receptor in the inactive state. Moreover, we described for the first time the binding mode of TZDs in the binding site of FFAR1. The thiazolidinedione head forms a hydrogen bonding network with the critical polar residues in the binding site, Arg258 and Asn244, while the rest of the molecule is embedded into the receptor hydrophobic pocket. Based on this modeling study, we arrived at a proposal of the pharmacophore required for binding to both PPARγ and FFAR1. Insights gained from this investigation should provide future directions for the design of novel dual acting antidiabetic agents.  相似文献   
4.
Immunocytochemical techniques have been used to study neuropeptide Y (NPY) distribution in the human visual cortex (Brodman's areas 17, 18 and 19) NYP cell bodies belong mostly to inhibitory (multipolar and bitufted) but also to excitatory (bipolar and some pyramidal) neuronal types. Their distribution is similar in the three cortical areas studied: 20 to 40% of the NPY perikarya are located in the cortical gray matter, mostly in the deep layers, while the remaining 60 to 80% are located in the underlying white matter. Immunoreactive NPY processes form a rich network of intersecting fibers throughout the entire visual cortex. A superficial plexus (layers I and II) and a deep plexus (deep layer V and layer VI) of NPY fibers are present in areas 17, 18 and 19. In area 17, an additional well developed plexus is present in layers IVb and IVc. These plexuses receive branches from long parallel fibers arising from deep cortical layers or underlying white matter and terminating in superficial layers. Local or extrinsic NPY terminals wind around vessels in the cortex as well as in the white matter, and either penetrate them or form clusters of club endings on their walls. Our results suggest a role for NPY in human visual circuitry and in cortical blood flow regulation.  相似文献   
5.
The highest concentration of neurokinin A-like immunoreactivity and substance P-like immunoreactivity in the guinea pig small intestine was associated with the myenteric plexus-containing longitudinal muscle layer. Chromatographic analysis of extracts of this tissue demonstrated the presence of neurokinin A and neuropeptide K but the probable absence of neurokinin B. A fraction of synaptic vesicles of density 1.133 +/- 0.003 g/ml was prepared from the myenteric plexus-containing tissue by density gradient centrifugation in a zonal rotor and was enriched 29 +/- 12-fold in the concentration of neurokinin A-like immunoreactivity and 43 +/- 13-fold in the concentration of substance P-like immunoreactivity. This fraction was separated from the fraction of vasoactive intestinal peptide-containing vesicles (density, 1.154 +/- 0.009 g/ml). Chromatographic analysis of lysates of the vesicles indicated the presence of neurokinin A but not neuropeptide K. It is postulated that beta-pre-protachykinin is processed to substance P, neurokinin A, and neuropeptide K in the cell bodies of myenteric plexus neurons but that conversion of neuropeptide K to neurokinin A takes place during packaging into storage vesicles for axonal transport. The data are consistent with the proposal that neurokinin A and substance P are stored in the same synaptic vesicle, but the possibility of cosedimentation of different vesicles of very similar density cannot be excluded.  相似文献   
6.
Summary The projections of nerve fibres with immunoreactivity for the peptides enkephalin (ENK), gastrin-releasing peptide (GRP), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and vasoactive intestinal peptide (VIP) were studied in canine small intestine by analysing the consequences of lesions of intrinsic and extrinsic nerves. Of peptides present in fibres supplying myenteric ganglia, GRP, SOM and VIP were in anally directed nerve pathways, whereas ENK and NPY were in orally directed pathways. Pathways ran for up to about 30 mm. SP fibres ran for short distances in both directions in the myenteric plexus. The circular muscle was supplied with ENK, NPY, SP and VIP fibres arising from the myenteric ganglia, whereas most mucosal SP and VIP fibres were deduced to arise from submucous ganglia. There were projections of fibres reactive for ENK, GRP, SOM, SP and VIP from myenteric ganglia to submucous ganglia. Antibodies to tyrosine hydroxylase were used to locate noradrenaline nerve fibres supplying the intestine; these fibres all disappeared when extrinsic nerves running through the mesentery to the small intestine were cut. It is deduced that there is an ordered pattern of projections of peptide-containing fibres in the canine intestine.  相似文献   
7.
Summary The morphological substrate of putative serotonin (5-HT)/neuropeptide Y (NPY) interactions in thé suprachiasmatic nucleus (SCN) was investigated by combined radioautography and immunocytochemistry after intraventricular administration of (3H)5-HT in the rat. In the ventral portion of the SCN, the distribution of (3H)5-HT uptake sites overlapped closely the NPY-immunoreactive terminals. Previous investigations have shown that the dense 5-HT and NPY innervations of the SCN originate in different structures, i.e., the midbrain raphe nuclei and the ventral lateral geniculate nucleus, respectively. Accordingly, in the present study, destruction of 5-HT afferents by 5,7-dihydroxytryptamine was not found to induce any modification in NPY staining and, in ultrastructural immuno-radioautographic preparations, two distinct pools of axonal varicosities could be identified. Both 5-HT and NPY terminals established morphologically defined synaptic junctions, sometimes on the same neuronal target. Some cases of direct axo-axonic appositions between the two types of terminals were also encountered. These data constitute additional criteria for characterizing the cytological basis of the multiple transmitter interactions presumably involved in the function of the SCN as a central regulator of circadian biological rhythms.  相似文献   
8.
Summary The cavernous body of green monkeys contains many unmyelinated and few myelinated axons. The unmyelinated axons form terminals in the adventitia of the arteries, between trabecular muscle cells, in the interstitium, and close to endothelium cells of the sinuses. All terminals displayed predominantly small clear vesicles and very few large granular vesicles; small granular vesicles were not seen. However, in rabbit penises, terminals with many large granular vesicles are prominent. Immunohistochemistry (PAP technique) showed a dense network of VIP- and NPY-reactive fibres around the arteries and around trabecular muscles. The density of nerve fibres was particularly high around the subendothelial cushions of the helicine arteries. Double staining for NPY and VIP revealed that both peptides were colocalized. Immunocytochemistry (preembedding PAP technique) showed VIP- and NPY-reactivity in terminals with small clear vesicles; the reaction product was bound to the cytoplasmic face of different membrane types. Although the intracellular localization of the reaction product is probably due to artefactual displacement during preparation, the uniformity of the terminals questions the view that large and small granular vesicles in all species characterize peptidergic and noradrenergic terminals, respectively. The essential findings can be summarized as (1) a high degree of uniformity of nerve terminals, (2) colocalization of VIP and NPY, (3) heavy innervation of the subendothelial cushions of the helicine arteries, and (4) possible innervation of endothelial cells.  相似文献   
9.
Summary Results from a previous report demonstrate that more than one molecular form of neuropeptide Y-like peptide may be present in the islet organ of the anglerfish (Lophius americanus). Most of the neuropeptide Y-like immunoreactive material was anglerfish peptide YG, which is expressed in a subset of islet cells, whereas an additional neuropeptide Y-like peptide(s) was localized in islet nerves. To learn more about the neuropeptide Y-like peptides in islet nerves, we have employed immunohistochemical and biochemical methods to compare peptides found in anglerfish islets and brain. Using antisera that selectively react with either mammalian forms of neuropeptide Y or with anglerfish peptide YG, subsets of neurons were found in the brain that labelled with only one or the other of the antisera. In separate sections, other neurons that were labelled with either antiserum exhibited similar morphologies. Peptides from brains and islets were subjected to gel filtration and reverse-phase high performance liquid chromatography. Radioimmunoassays employing either the neuropeptide Y or peptide YG antisera were used to examine chromatographic eluates. Immunoreactive peptides having retention times of human neuropeptide Y and porcine neuropeptide Y were identified in extracts of both brain and islets. This indicates that peptides structurally similar to both of these peptides from the neuropeptide Y-pancreatic polypeptide family are expressed in neurons of anglerfish brain and nerve fibers of anglerfish islets. The predominant form of neuropeptide Y-like peptide in islets was anglerfish peptide YG. Neuropeptide Y-immunoreactive peptides from islet extracts that had chromatographic retention times identical to human neuropeptide Y and porcine neuropeptide Y were present in much smaller quantities. These results are consistent with the hypothesis that peptides having significant sequence homology with human neuropeptide Y and porcine neuropeptide Y are present in the nerve fibers that permeate the islet.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号