首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   4篇
  国内免费   5篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   9篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1992年   4篇
  1991年   1篇
  1990年   9篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
1.
Articular cartilage covers the temporomandibular joint (TMJ) and provides smooth and nearly frictionless articulation while distributing mechanical loads to the subchondral bone. The thickness of the cartilage is considered to be an indicator of the stage of development, maturation, aging, loading history, and disease. The aim of our study was to develop a method for ex vivo assessment of the thickness of the cartilage that covers the TMJ and to compare that with two other existing methods. Eight porcine TMJ condyles were used to measure cartilage thickness. Three different methods were employed: needle penetration, micro-computed tomography (micro-CT), and histology; the latter was considered the gold standard. Histology and micro-CT scanning results showed no significant differences between thicknesses throughout the condyle. Needle penetration produced significantly higher values than histology, in the lateral and anterior regions. All three methods showed the anterior region to be thinner than the other regions. We concluded that overestimated thickness by the needle penetration is caused by the penetration of the needle through the first layer of subchondral bone, in which mineralization is less than in deeper layers. Micro-CT scanning method was found to be a valid method to quantify the thickness of the cartilage, and has the advantage of being non-destructive.  相似文献   
2.
The effect of needle damage on the release rate of Masson pine (Pinus massoniana Lamb.) volatiles was examined. Needles were continuously damaged by mechanical damage (MDP) or by feeding of pine caterpillar (Dendrolimus punctatus) larvae (LFP); undamaged pine was used as a control (UDP). Volatiles were collected before damage, and at 16, 24, 40, 48, 64, 72, 88 and 96 h post-damage, and analyzed. The analyses revealed that 19 compounds identified as constitutive volatiles from UDP were terpenes and green leaf odors. The release rate of volatiles from MDP or LFP was higher than that from UDP. At 96 h post-damage, emission from MDP or LFP returned to the same level as that of UDP. Some volatiles, including sabinene, ocimene, limonene-1,2-epoxide, linalool, linalool acetate, germacrene d-4-ol, farnesol, and (E)-4,8-dimethyl-1,3,7-nonatriene were induced by mechanical damage and/or larval attack. Furthermore, the release rate of linalool acetate, farnesol, or (E)-4,8-dimethyl-1,3,7-nonatriene from LFP was higher than that from MDP. Based on an exact estimation of the proportion of damaged pine needles, a significant linear correlation between the release rate of total volatiles identified and the proportion of damaged needles was found in the case of LFP but not MDP.  相似文献   
3.
Pinus species show remarkable ontogenetic differences in needle morphology (heterophylly) between juvenile and adult vegetative phases. This developmental shift may play an adaptative role in their success under diverse habitats. As a first step to know the functional differences between each vegetative phase, we compared water loss through the cuticles of juvenile and adult needles of 21-month-old nursery-grown seedlings of nine hard pine species. Cuticular transpiration (CT), calculated after complete stomatal closure, was obtained by leaf-drying curves, and was related to leaf, ontogenetic and climatic parameters. The rate of cuticular transpiration (RCT) between juvenile and adult needles differed across pine species, and in particular segregated the Mediterranean species Pinus canariensis and P. halepensis, from the Eurasian P. uncinata and introduced species P. radiata. For these species, RCT was always higher in juvenile needles. The different leaf and ontogenic parameters studied were correlated with the variation in RCT among the nine pine species. We discuss this relationship in the light of the species ecology. Besides their possible adaptive interpretation, these results suggest an underlying need to consider the ontogenetic heterophylly when assessing functional traits in hard pine seedlings, in particular those traits that govern water relations.  相似文献   
4.
Dieback of the terminal shoot and consequently bushy growth induced by boron deficiency have been reported widely throughout the world in several tree species. Recently, similar growth damage was documented in half of the young spruce stands in eastern Finland. To clarify the role of B deficiency, the light microscopic structure of emerging buds and of developing and previous-year needles of mature Norway spruce (Picea abies L. Karst.) from damaged (D stand), partly damaged (PD stand) and healthy (H stand) stands were analysed. The samples, on which needle nutrient concentrations were also determined, were taken seven times between early spring (April) and early winter (November). Cell death characterized by precipitation of the cell content, possibly due to the release of tannins after membrane rupture, was seen in the apex of emerging buds, and this led to fatal damage in about half of the buds in the trees from the D stand, where the needle B concentration was well below the deficiency level of 4–5 mg kg−1. Furthermore, an increase in living cells that accumulated tannins in the vacuoles, which is a common stress and/or defense reaction, was found in the primordial shoots of buds and in the differentiating needles in the PD and D stands. The increase in the areas of the central cylinder and of the xylem found in the needles indicate structural plasticity during needle differentiation to drought. The time frame for bud emergence from late May up to mid-September means that an adequate B supply is necessary throughout the summer in order to avoid fatal bud damage and thus bushy growth of the trees.  相似文献   
5.
鼎湖山森林群落不同演替阶段优势种叶生态解剖特征研究   总被引:13,自引:0,他引:13  
对南亚热带鼎湖山森林群落不同演替阶段8种优势树种进行了叶生态解剖学研究。观察的叶片解剖特征有:叶腹角质膜厚度、栅栏组织厚度、海绵组织厚度、叶背角质膜厚度及叶总厚度等。马尾松(Pinus massoniana)在针叶林群落和针阔叶混交林群落生境中,针阔叶混交林中叶片厚度变小,主脉管胞、树脂道平均直径变小。从针阔叶混交林演替阶段到季风常绿阔叶林演替阶段,锥栗(Castanopsis chinensis)叶片厚度、海绵组织厚度增加,栅栏组织厚度、P/S值(栅栏组织与海绵组织厚度比)减少;荷木(Schima superba)和黄果厚桂(Cryptocarya concinna)叶片厚度、栅栏组织厚度、叶腹及叶背角质膜厚度差异显著;从针阔叶混交林演替阶段到季风常绿阔叶林演替阶段,锥栗、荷木、黄果厚寺叶片厚度和栅栏组织厚度等差异均显著。不同生境下林内气温、相对湿度、光合有效辐射等小气候特征是叶片结构特征差异的主要影响因子,叶片结构差异反映了叶片结构在一定程度上对生境的适应。  相似文献   
6.
Summary A method for the rapid determination of the lengths and surface areas of very large samples of needles of Picea abies (L.) Karst. using a computer-aided image analysis system was developed. Two independent methods for measuring non-destructively the volumes of individual needles and of all needles attached to a twig were devised. The surface areas and lengths of about 38000 needles sampled from the three youngest needle age-classes (1986, 1985, 1984) of 48 trees approximately 130 years old at four sites in the Fichtelgebirge mountains (N. E. Bavaria, FRG) were measured. The frequency distributions of lengths and areas for each site and age-class are given. Variability of needle size was fairly large. Even though the sites differed in climate, soil, and air pollution levels no consistent effect of these factors on needle size could be detected. Needle lengths and surface areas did not correlate with either the total chlorophyll content of the needles or the degree of crown thinning. The needle surface area (in mm2) of fully developed P. abies needles can be estimated by the empirical equation surface area = 4.440 x needle length -24.8 (r = 0.937), and the needle volume (in mm3) by needle volume = 0.208 x projected needle area 1.353 (r = 0.969).  相似文献   
7.
Environmental conditions control physiological processes in plants and thus their growth. The predicted global warming is expected to accelerate tree growth. However, the growth response is a complex function of several processes with both direct and indirect effects. To analyse this problem we have used needle nitrogen productivity, which is an aggregate parameter for production of new foliage. Data on needle dry matter, production, and nitrogen content in needles of Scots pine ( Pinus sylvestris) and Norway spruce ( Picea abies) from a wide range of climatic conditions were collected and needle nitrogen productivities, defined as dry matter production of needles per unit of nitrogen in the needle biomass, were calculated. Our results show that the nitrogen productivity for spruce is insensitive to temperature. However, for pine, temperature affects both the magnitude of nitrogen productivity at low needle biomass and the response to self-shading but the temperature response is small at the high end of needle biomass. For practical applications it may be sufficient to use a species-specific nitrogen productivity that is independent of temperature. Because temperature affects tree growth indirectly as well as through soil processes, the effects of temperature change on tree growth and ecosystem carbon storage should mainly be derived from effects on nitrogen availability through changes in nitrogen mineralization. In addition, this paper summarises data on dry matter, production and nitrogen content of needles of conifers along a temperature gradient.  相似文献   
8.
 Levels of indole-3-acetic acid (IAA) were determined in needles from silver fir (Abies alba Mill.) trees in the northern Black Forest. IAA was quantified by gas chromatography (GC) as 1-heptafluorobutyryl-IAA-methylester (HFB-IAA-ME) using electron capture detection. Prior to GC analysis, extensive purification of needle extracts was performed employing two HPLC steps. Peak identity of HFB-IAA-ME was confirmed by combined gas chromatography-mass spectrometry in selected samples. Levels of IAA in needles belonging to different needle age-classes exhibited a cyclic seasonal pattern with highest concentrations in winter and lowest levels in spring when bud-break occurred. Such a cyclic seasonal pattern of IAA levels was also observed in needles from declining fir trees or fir trees suffering from a strong sulfur impact (S-impact) in the field due to a local SO2 source. Levels of IAA increased with increasing needle age. This age dependency of IAA concentrations was most pronounced in late autumn when IAA levels were high and nearly disappeared in spring when IAA levels reached their minimum. In needles from declining fir trees or fir trees suffering from a strong S-impact in the field, IAA levels hardly increased with increasing needle age. It is suggested that in healthy trees high levels of IAA protect older needles from abscission and that the considerable losses of older needles of declining fir trees or of fir trees under S-impact are a consequence of the low levels of IAA found in older needles of such trees. Received: 4 May 1995 / Accepted: 29 August 1995  相似文献   
9.
 The relationship between stand biomass production, and tree age and size is generally a curve with a maximum. To understand why wood production decreases in the final stages of stand development, the influence of increasing tree size on foliage chemical composition and substrate requirement for foliage construction in terms of glucose [CC, g glucose (g dry mass) –  1] was investigated in the evergreen conifer Picea abies (L.) Karst. Because it was already known that irradiance affects both foliage morphology and chemistry in this species, and it was expected that the foliage in large overstory trees would intercept on average more light than that in saplings in understory, irradiance was measured in the sampling locations and included in the statistical models. CC of needles increased with increasing total tree height (TH) and was independent of relative irradiance. A major reason for increasing CC with increasing TH was a greater proportion of carbon-rich lignin in the needles in large trees. However, lignin did not fully account for the observed changes in CC, and it was necessary to assume that certain other carbon-rich secondary metabolites such as terpenes also accumulate in the foliage of large trees. Enhanced requirements for needle mechanical strength as evidenced by greater lignin concentrations in large trees were attributed to increased water limitations with increasing tree height. Because water relations may also control the sink capacities for assimilate usage, apart from the mechanical requirements, they may provide an explanation for the accumulation of other energetically expensive compounds in the needles as well. Biomass partitioning within the shoot was another foliar parameter modified in response to increasing tree size. The proportion of shoot axes, which serve to provide needles with mechanical support and to supply them with water, decreased with increasing TH. This may limit water availability in the needles, and/or manifest a lower water requirement of the needles containing proportionally more supporting and storage substances, and consequently, less physiologically active compounds such as proteins. Probably the same factors which caused CC of the needles to depend on TH, were also responsible for greater CC of the shoot axes in larger trees. These results collectively suggest that increasingly more adverse water relations with increasing tree size may provide a mechanistic explanation for the decline in foliar biomass and its functional activity during stand ageing. Received: 9 April 1996 / Accepted: 14 January 1997  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号