首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   14篇
  国内免费   9篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   7篇
  2019年   12篇
  2018年   9篇
  2017年   11篇
  2016年   6篇
  2015年   8篇
  2014年   16篇
  2013年   20篇
  2012年   14篇
  2011年   63篇
  2010年   9篇
  2009年   18篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   11篇
  2002年   6篇
  2001年   2篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1980年   1篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
1.
To overcome the high energy-consuming process of microalgae drying, a two-step lipase catalysis technique for the preparation of biodiesel from microalgae lipid of Chlorella spp. was developed. In the first step, free fatty acids (FAAs) and triacylglycerols (TAGs) are released after cell disruption and extracted, while the TAGs were hydrolysed by free lipase in aqueous phase. In the second step, FAAs were esterified with ethanol in the catalysis of free suspended lipase. The maximum rate of hydrolysis and esterification was 93.6% and 91.3%, respectively. The effects of reaction parameters, such as reaction time, enzyme amount, water content and molar ratio of lipid to ethanol on hydrolysis or esterification, were investigated. The results indicated that two-step reaction process (hydrolyse esterify) for biodiesel production were feasible.  相似文献   
2.
A range of model biochemical components, microalgae and cyanobacteria with different biochemical contents have been liquefied under hydrothermal conditions at 350 °C, ∼200 bar in water, 1 M Na2CO3 and 1 M formic acid. The model compounds include albumin and a soya protein, starch and glucose, the triglyceride from sunflower oil and two amino acids. Microalgae include Chlorella vulgaris,Nannochloropsis occulata and Porphyridium cruentum and the cyanobacteria Spirulina. The yields and product distribution obtained for each model compound have been used to predict the behaviour of microalgae with different biochemical composition and have been validated using microalgae and cyanobacteria. Broad agreement is reached between predictive yields and actual yields for the microalgae based on their biochemical composition. The yields of bio-crude are 5-25 wt.% higher than the lipid content of the algae depending upon biochemical composition. The yields of bio-crude follow the trend lipids > proteins > carbohydrates.  相似文献   
3.
The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. However, with the exception of the symbiotic rhizobia-legumes system, progress towards a more extensive realization of this goal has been slow. In this study we manipulated the endogenous regulation of both nitrogen fixation and assimilation in the aerobic bacterium Azotobacter vinelandii. Substituting an exogenously inducible promoter for the native promoter of glutamine synthetase produced conditional lethal mutant strains unable to grow diazotrophically in the absence of the inducer. This mutant phenotype could be reverted in a double mutant strain bearing a deletion in the nifL gene that resulted in constitutive expression of nif genes and increased production of ammonium. Under GS non-inducing conditions both the single and the double mutant strains consistently released very high levels of ammonium (>20 mM) into the growth medium. The double mutant strain grew and excreted high levels of ammonium under a wider range of concentrations of the inducer than the single mutant strain. Induced mutant cells could be loaded with glutamine synthetase at different levels, which resulted in different patterns of extracellular ammonium accumulation afterwards. Inoculation of the engineered bacteria into a microalgal culture in the absence of sources of C and N other than N2 and CO2 from the air, resulted in a strong proliferation of microalgae that was suppressed upon addition of the inducer. Both single and double mutant strains also promoted growth of cucumber plants in the absence of added N-fertilizer, while this property was only marginal in the parental strain. This study provides a simple synthetic genetic circuit that might inspire engineering of optimized inoculants that efficiently channel N2 from the air into crops.  相似文献   
4.
Bio-fertilization is a sustainable agricultural practice that includes using bio-fertilizers to increase soil nutrient content resulting in higher productivity. Soil micro-flora has been exposed to improve soil fertility and increase biomass productivity and identified as a correct environmentally friendly bio-based fertilizer for pollution-free agricultural applies. The majority of cyanobacteria can fix nitrogen from the atmosphere and several species including Anabaena sp., Nostoc sp., and Oscillatoria angustissima is known to be effective cyanobacterial based bio fertilizers. Acutodesmus dimorphus, Spirulina platensis Chlorella vulgaris, Scenedesmus dimorphus, Anabaena azolla, and Nostoc sp. are some of the green microalgae and cyanobacteria species that have been successfully used as bio fertilizers to boost crop growth. Also, Chlorella vulgaris is one of the most commonly used microalgae in bio fertilizer studies. The addition of seaweed species that are Sargassum sp. and Gracilaria verrucosa leads to chemical changes as a soil fertility indicator on clay and sandy soils, and the addition of seaweed conditioner to soil can improve its organic content, return pH to normal, and reduce C/N ratio in both sandy and clay soil. This review provides an effective approach to increase soil fertility via environmentally friendly bio-based fertilizer using micro and macro algae. Instead of the usage of inorganic and organic fertilizers that have polluted impacts to soil as aggregation of heavy metals, in addition to there their human carcinogenic effects.  相似文献   
5.
Botryococcus braunii (N-836) produced 60 – 73% hydrocarbons on dry weight basis, of which C34 botryococcene was found to be the major hydrocarbon, constituting about 50 – 76 % of total content throughout the experimental studies. Major fatty acids present in this organism were C18:1 and C16:0. Saturated hydrocarbons like docosane, hexacosane and heptacosane were also found to be produced by the organism. Methyl branched fatty acids, were identified as 16-methyl heptadecanoic and 5, 9, 13 - trimethyl tetradecanoic acids by GC-MS. Maximum hydrocarbon accumulation was observed during third week of its growth.  相似文献   
6.
This investigation was designed to explore the relationships between lichen symbionts (phycobiont and mycobiont) and the substrate on which they grow by examining the chemical and ultrastructural features of the lichen-soil interface. These lichens form an integral part of microbiotic soil crusts. Fragments of three different lichen biotypes growing over gypsum crystals and marls were fixed and embedded in resin. The lichen-substratum interface was then examined by scanning electron microscopy with backscattered electron imaging. In situ observation, microanalytical (EDS), and FT-Raman plus infrared spectroscopy of the lichen-substratum interface indicated that different ultrastructural features of the mycobiont were related to biogeochemical processes and Ca 2+ distribution in the soil crust. Phycobionts were observed to make direct contact with the substratum and to be surrounded by a nondifferentiated thallus structure. These observations suggest that they can grow outside the thallus in the early stages of lichen development in the semi-arid conditions of their habitat. The particular ultrastructural features of the lichen thallus and of the lichen-substratum interface appear to have marked effects on runoff phenomena and ponding generation of the surface.  相似文献   
7.
Microalgae contain lipid bodies (LBs) composed of triacylglycerols, which can be converted to biodiesel. Here we demonstrate a method to study the accumulation patterns of LBs in different microalgae strains and culture conditions utilizing laser scanning confocal microscopy (LSCM) with BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) staining, in parallel with Nile Red (9-diethylamino-5H-benzo-a-phenoxazine-5-one) fluorescence analysis of intracellular lipids in microplates. Phaeodactylum tricornutum and Tetraselmis suecica were selected as model organisms and monitored throughout the growth phases in standard and nitrogen-deficient growth conditions. Utilizing image quantification techniques, the number and morphology of LBs suggest that P. tricornutum accumulates lipids by merging with existing LBs, while T. suecica synthesizes new LBs. We observed that T. suecica accumulates a higher number of LBs and total volume of lipids per cell, while P. tricornutum accumulates only 1–2 LBs with a larger volume per LB. LSCM analysis complements Nile Red (NR) methods because LSCM provides three-dimensional images of lipid accumulation at a cellular level, while NR analysis can quickly monitor the total levels of intracellular lipids for phenotypic screening. Using NR analysis, we have observed that the optimal harvest date for P. tricornutum and T. suecica in standard cultivation conditions is 24 and 42 days, respectively. Comparison with nitrogen-deficient growth conditions is utilized as a model to confirm that LSCM and NR analysis can be used to study lipid storage and productivity for diverse growth conditions and various strains of microalgae.  相似文献   
8.
Microalgae are one of the important components in food chains of aquatic ecosystems and have been used for human consumption as food and as medicines. The wide diversity of compounds synthesized from different metabolic pathways of fresh and marine water algae provide promising sources of fatty acids, steroids, carotenoids, polysaccharides, lectins, mycosporine-like amino acids, halogenated compounds, polyketides, toxins, agar agar, alginic acid and carrageenan. This review discusses microalgae used to produce biological substances and its economic importance in food science, the pharmaceutical industry and public health.  相似文献   
9.
Recently, microalgae have been considered as a promising alternative for the production of biofuels from CO2. For the efficient cultivation of these microalgae, several types of photobioreactors have been designed and Pilot scale photobioreactors have been used to assess the performance of these reactors. Therein the primarily investigated reactor type is the Raceway Pond. However, the less researched Thin‐Layer Cascade Photobioreactor (TLC) shows a high potential for efficient production processes. Unfortunately, for low‐value products like biofuels costs must be kept to a minimum for an economic operation. To facilitate this, 3D Computational Fluid Dynamic simulations can be employed to estimate performance of reactor variants e.g. with respect to power input and mixing. Since up to now little effort has been put into the modelling of TLC reactors, this report aims to present a simulation approach for these reactors types that allows simple adaptation to different geometric or operational boundary conditions. All models have been generated for a two‐phase mixture in OpenFOAM. To demonstrate its applicability, validation measurements with a physical unit have been performed and were compared to the simulation results. With errors in the order of 10 % a successful simulation of the reactor geometry could be proven.  相似文献   
10.
The diatom Haslea ostrearia that lives in oyster ponds has the distinctive feature of synthesizing “marennine”, a blue-green pigment of which the chemical nature still remains unknown. This pigment is responsible for the greening of oyster gills. Here, we report a new method for extraction and purification of intracellular (accumulated in the apex of the cell) and extracellular (released into the external medium) forms of the pigment. Intracellular marennine is obtained by extraction from blue algal pellets with a carbonate buffer. The extract is then centrifuged and filtered. Extracellular marennine is obtained by clarification of blue-coloured culture medium. Both extracts are then purified by a semi-preparative process, using ultrafiltration through membranes and anion-exchange chromatography. This procedure allows us to produce native pigment displaying the degree of purity required to enter upon the molecular characterisation of marennine. By this process, about 35% of the initial amount of pigment can be recovered. If necessary, this method could be easily scaled up to a larger production system to accommodate potential industrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号