首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   10篇
  国内免费   5篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   9篇
  2018年   8篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   18篇
  2013年   9篇
  2012年   7篇
  2011年   3篇
  2010年   9篇
  2009年   4篇
  2008年   7篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1995年   1篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1976年   1篇
排序方式: 共有128条查询结果,搜索用时 734 毫秒
1.
2.
辜玉萍  陈蕾  李千音 《生物工程学报》2020,36(10):2151-2161
肾脏是人体重要器官,肾脏发育对肾脏的形成和功能至关重要,其中后肾间充质细胞 (Metanephric mesenchyme,MM) 间质-上皮转化 (Mesenchymal-epithelial transition,MET) 是肾单位形成的关键环节。qRT-PCR和Western blotting实验检测蛋白质磷酸酶3催化亚基α (Protein phosphatase 3 catalytic subunit alpha,PPP3CA) 在不同状态MM细胞株mK3、mK4中的表达谱及对MET标志蛋白调控作用;采用慢病毒包装方式构建稳定敲低PPP3CA的mK4细胞株;采用CCK-8、EdU实验、细胞划痕实验、流式细胞技术分别检测PPP3CA对上皮样后肾间充质细胞株mK4细胞生长、迁移、凋亡的调控作用。PPP3CA在mK4细胞中表达量较间质样后肾间充质细胞mK3更高,敲低PPP3CA后,检测MET标志物及细胞生物学行为,结果显示敲低PPP3CA显著上调上皮细胞标志物E-cadherin表达,促进MET过程,且促进细胞凋亡,抑制细胞增殖和迁移。此外,敲低PPP3CA促进ERK1/2磷酸化,提示PPP3CA生物学功能的调控机制可能与其去磷酸化ERK1/2蛋白相关。以上结果提示PPP3CA在MM细胞MET转化和生物学行为调节中发挥重要功能,为发现和解析肾发育过程中潜在的关键调节因子提供了新的理论基础。  相似文献   
3.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
4.

Although GR2(SO4 2-) can be easily formed by abiotic synthesis, the biotic formation of hydroxysulphate as a single iron(II-III) mineral in microbial culture and its characterization was not achieved. This study was carried out to investigate the sole formation of GR2(SO4 2-) during the reduction of γ-FeOOH by a dissimilatory iron-respiring bacterium, Shewanella putrefaciens CIP 8040T. Reduction experiments were performed in a non-buffered medium devoid of organic compounds, with 25 mM of sulphate and with a range of lepidocrocite concentrations with H2 as the electron donor under nongrowth conditions. The resulting biogenic solids, after iron-respiring activity, were characterized by X-ray diffraction (XRD), transmission Mössbauer spectroscopy (TMS) and electron microscopy (SEM and TEM). The sulphate has been identified as the intercalated anion by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In addition, the structure of this sulphate anion was discussed. Our experimental study demonstrated that, under H2 atmosphere, the biogenic solid was a GR2(SO4 2-), as the sole iron(II-III) bearing mineral, whatever the initial lepidocrocite concentration. The crystals of the biotically formed GR2(SO4 2-) are significantly larger than those observed for GR2(SO4 2-) obtained through abiotic preparation, < 15 μ m diameter as against 0.5–4 μm, respectively.  相似文献   
5.
The concept of drug repositioning has recently received considerable attention in the field of oncology. In the present study, we propose that paroxetine can be used as a potent anticancer drug. Paroxetine, one of the selective serotonin reuptake inhibitors (SSRIs), has been widely prescribed for the treatment of depression and anxiety disorders. Recently, SSRIs have been reported to have anticancer activity in various types of cancer cells; however, the underlying mechanisms of their action are not yet known. In this study, we investigated the potential anticancer effect of paroxetine in human colorectal cancer cells, HCT116 and HT‐29. Treatment with paroxetine reduced cell viability, which was associated with marked increase in apoptosis, in both the cell lines. Also, paroxetine effectively inhibited colony formation and 3D spheroid formation. We speculated that the mode of action of paroxetine might be through the inhibition of two major receptor tyrosine kinases – MET and ERBB3 – leading to the suppression of AKT, ERK and p38 activation and induction of JNK and caspase‐3 pathways. Moreover, in vivo experiments revealed that treatment of athymic nude mice bearing HT‐29 cells with paroxetine remarkably suppressed tumour growth. In conclusion, paroxetine is a potential therapeutic option for patients with colorectal cancer.  相似文献   
6.
NK1 is a splice variant of the polypeptide growth factor HGF/SF that consists of the N terminal (N) and first kringle (K) domains and retains receptor binding and signalling. While NK1 behaves as a monomer in solution, two independent crystallographic structures have previously shown an identical, tightly packed dimer. Here we report a novel orthorhombic crystal form of NK1 at 2.5 A resolution in which four NK1 protomers are packed in two distinct dimers in the asymmetric unit. Although the basic architecture of the new NK1 dimers is similar to the two described earlier, the new crystal form demonstrates extensive hinge movement between the N and K domain that leads to re-orientation of the receptor-binding sites. The hinge bending is evidence of the paucity of strong interactions between domains within the protomer, in contrast to the extensive interactions between protomers in the dimer. These observations are consistent with domain swapping in the dimer, such that the interdomain interactions of the monomer are replaced by equivalent interprotomer interactions in the dimer and offer a route for protein engineering of NK1 variants which may act as receptor antagonists.  相似文献   
7.
The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed.  相似文献   
8.
Every year about 500,000 people in the United States die as a result of cancer. Among them, 90% exhibit systemic disease with metastasis. Considering this high rate of incidence and mortality, it is critical to understand the mechanisms behind metastasis and identify new targets for therapy. In recent years, two broad mechanisms for metastasis have received significant attention: epithelial-to-mesenchymal transition (EMT) and tumor microenvironment interactions. EMT is believed to be a major mechanism by which cancer cells become migratory and invasive. Various cancer cells--both in vivo and in vitro--demonstrate features of epithelial-to-mesenchymal-like transition. In addition, many steps of metastasis are influenced by host contributions from the tumor microenvironment, which help determine the course and severity of metastasis. Here we evaluate the diverse mechanisms of EMT and tumor microenvironment interactions in the progression of cancer, and construct a rational argument for targeting these pathways to control metastasis.  相似文献   
9.
Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-κB. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.  相似文献   
10.
Maintenance of cytosine methylation in plants is controlled by three DNA methyltransferases. MET1 maintains CG methylation, and DRM1/2 and CMT3 act redundantly to enforce non-CG methylation. RPS, a repetitive hypermethylated DNA fragment from Petunia hybrida, attracts DNA methylation when transferred into Petunia or other species. In Arabidopsis thaliana, which does not contain any RPS homologues, RPS transgenes are efficiently methylated in all sequence contexts. To test which DNA methylation pathways regulate RPS methylation, we examined maintenance of RPS methylation in various mutant backgrounds. Surprisingly, CG methylation was lost in a drm1/2/cmt3 mutant, and non-CG methylation was almost completely eliminated in a met1 mutant. An unusual cooperative activity of all three DNA methyltransferases is therefore required for maintenance of both CG and non-CG methylation in RPS. Other unusual features of RPS methylation are the independence of its non-CG methylation from the RNA-directed DNA methylation (RdDM) pathway and the exceptional maintenance of methylation at a CC(m)TGG site in some epigenetic mutants. This is indicative of activity of a methylation system in plants that may have evolved from the DCM methylation system that controls CC(m)WGG methylation in bacteria. Our data suggest that strict separation of CG and non-CG methylation pathways does not apply to all target regions, and that caution is required in generalizing methylation data obtained for individual genomic regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号