首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  2019年   2篇
  2012年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1989年   2篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
Peptide antibiotics containing lanthionine and 3-methyllanthionine bridges, named lantibiotics are of increasing interest. A new lantibiotic, gallidermin, has been isolated from Staphyloccus gallinarum. Here we report the isolation of its structural gene which we name gdmA. In all lantibiotics so far studied genetically, three peptides can be formally distinguished: (i) the primary translation product, which we call the prepeptide; (ii) the propeptide lacking the leader sequence and (iii) the mature lantibiotic. Unlike the plasmid-coded epidermin, gdmA is located on the chromosome. The gdmA locus codes for a 52 amino acid residue prepeptide, consisting of an alpha-helical leader sequence of hydrophilic character, which is separated from the C-terminus (propeptide) by a characteristic proteolytic processing site (Pro-2 Arg-1 Ile1). Although pro-gallidermin differs from pro-epidermin (a recently isolated lantibiotic) only by a single amino acid residue exchange. Leu instead of Ile, the N-terminus of the prepeptide differs by an additional two exchanges.  相似文献   
2.
Specific drug-sensing systems that coordinate appropriate genetic responses assure the survival of microorganisms in the presence of antibiotics. We report on the development and application of a microtiter plate-based bioassay for the identification of antibiotics interfering with the lipid II cycle essential for peptidoglycan biosynthesis. A Bacillus subtilis reporter strain sensing specifically lipid II - interfering cell wall biosynthesis stress (T. Mascher, S.L. Zimmer, T.-A. Smith and J. Helmann, Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis; Antimicrob. Agents Chemother., Vol 48 (2004) pp. 2888-2896) was analyzed in the presence of different lantibiotics. We could show dose-dependent cell wall biosynthesis stress of reporter cells in response to the action of the lantibiotics subtilin produced by B. subtilis, epidermin and gallidermin of Staphylococcus epidermidis or S. gallinarum, respectively, in both, agar-plate and liquid culture-based assays. Surprisingly, also cinnamycin of Streptomyces cinnamoneus cinnamoneus), previously known to bind specifically to phosphatidylethanolamin of biological membranes, provoked strong cell wall biosynthetic stress. Our results show that our system can be used for screening purposes, for example to discover novel inhibitors of cell wall biosynthesis.  相似文献   
3.
4.
The need for new antibiotic compounds is rising and antimicrobial peptides are excellent candidates to fulfill this object. The bacteriocin subgroup lantibiotics, for example, are active in the nanomolar range and target the membranes of mainly Gram-positive bacteria. They bind to lipid II, inhibit cell growth and in some cases form pores within the bacterial membrane, inducing rapid cell death. Pharmaceutical usage of lantibiotics is however hampered by the presence of gene clusters in human pathogenic strains which, when expressed, confer resistance. The human pathogen Streptococcus agalactiae COH1, expresses several lantibiotic resistance proteins resulting in resistance against for example nisin.This study presents a highly potent, pore forming nisin variant as an alternative lantibiotic which bypasses the SaNSR protein. It is shown that this nisin derivate nisinC28P keeps its nanomolar antibacterial activity against L. lactis NZ9000 cells but is not recognized by the nisin resistance protein SaNSR.NisinC28P is cleaved by SaNSR in vitro with a highly decreased efficiency, as shown by an cleavage assay. Furthermore, we show that nisinC28P is still able to form pores in the membranes of L. lactis and is three times more efficient against SaNSR-expressing L. lactis cells than wildtype nisin.  相似文献   
5.
The lantibiotic mutacin II, produced by Streptococcus mutans T8, is a ribosomally synthesized peptide antibiotic that contains thioether amino acids such as lanthionine and methyllanthionine as a result of post-translational modifications. The mutacin II leader peptide sequence shares a number of identical amino acid residues with class AII lantibiotic leader peptides. To study the role of these conservative residues in the production of active antimicrobial mutacin, 15 mutations were generated by site-directed mutagenesis. The effects of these substitutions vary from no effect to complete block-out. Mutations G-1A, G-2A, I-4D, and L-7K completely blocked the production of mature mutacin. Other mutations (I-4V, L-7M, E-8D, S-11T/A, V-12I/A, and E-13D) had no detectable effect on mutacin production. The changes of Glu-8 to Lys, Val-12 to Leu, Glu-13 to Lys reduced the mutacin production level to about 75%, 50%, and 10% of the wild-type, respectively. Thus, our data indicated that some of these conserved residues are essential for the mutacin biosynthesis, whereas others are important for optimal biosynthesis rates.  相似文献   
6.
Cloning, sequencing and production of the lantibiotic mersacidin   总被引:5,自引:0,他引:5  
Abstract Mersacidin is a lanthionine-containing peptide antibiotic that shows a good in vivo efficiency against methicillin-resistant Staphylococcus aureus . It is excreted during early stationary phase and could be purified from culture supernatant in a one-step procedure by reversed phase HPLC. Its structural gene was cloned from chromosomal DNA of the producer strain Bacillus subtilis HIL Y-85,54728. Sequencing revealed that pre-mersacidin consists of an unusually long 48 amino acid leader sequence and a 20 amino acid propeptide part which is modified during biosynthesis to the mature lantibiotic. The comparison of the mersacidin prepeptide with those of hitherto known lantibiotics demonstrates that mersacidin is more closely related to type B lantibiotic cinnamycin than to type A lantibiotics.  相似文献   
7.
Lantibiotics: structure, biosynthesis and mode of action   总被引:30,自引:0,他引:30  
The lantibiotics are a group of ribosomally synthesised, post-translationally modified peptides containing unusual amino acids, such as dehydrated and lanthionine residues. This group of bacteriocins has attracted much attention in recent years due to the success of the well characterised lantibiotic, nisin, as a food preservative. Numerous other lantibiotics have since been identified and can be divided into two groups on the basis of their structures, designated type-A and type-B. To date, many of these lantibiotics have undergone extensive characterisation resulting in an advanced understanding of them at both the structural and mechanistic level. This review outlines some of the more recent developments in the biochemistry, genetics and mechanism of action of these peptides.  相似文献   
8.
Nisin, a peptide antibiotic, efficiently kills bacteria through a unique mechanism which includes inhibition of cell wall biosynthesis and pore formation in cytoplasmic membranes. Both mechanisms are based on interaction with the cell wall precursor lipid II which is simultaneously used as target and pore constituent. We combined two biosensor techniques to investigate the nisin activity with respect to membrane binding and pore formation in real time. Quartz crystal microbalance (QCM) allows the detection of nisin binding kinetics. The presence of 0.1 mol% lipid II strongly increased nisin binding affinity to DOPC (kD 2.68 × 10− 7 M vs. 1.03 × 10− 6 M) by a higher association rate. Differences were less pronounced while using negatively charged DOPG membranes. However, lipid II does not influence the absolute amount of bound nisin. Cyclic voltammetry (CV) data confirmed that in presence of 0.1 mol% lipid II, nanomolar nisin concentrations were sufficient to form pores, while micromolar concentrations were necessary in absence of lipid II. Both techniques suggested unspecific destruction of pure DOPG membranes by micromolar nisin concentrations which were prevented by lipid II. This model membrane stabilization by lipid II was confirmed by atomic force microscopy. Combined CV and QCM are valuable to interpret the role of lipid II in nisin activity.  相似文献   
9.
Streptococcin A-FF22 (SA-FF22) is a type AII linear lantibiotic produced by Streptococcus pyogenes strain FF22. Sequence analysis of an approximate 10 kb region of DNA showed it to contain nine open reading frames arranged in three operons responsible for regulation, biosynthesis and immunity of SA-FF22. This region is organized similarly to the Lactococcus lactis lacticin 481 region, however, unlike lacticin 481, a two-component regulatory system is essential for SA-FF22 production. Located immediately downstream of the scn region is a putative transposase gene, the presence of which supports earlier data that indicated a mobile nature to this region.  相似文献   
10.
Linear DNA plasmids of yeasts   总被引:2,自引:0,他引:2  
Abstract Proteinaceous antimicrobial compounds are produced by a diversity of species ranging from bacteria to humans. This review focuses on the mode of action of pore-forming bacteriocins produced by Gram-positive bacteria. The mechanism of action of specific immunity proteins, which protect the producer strains from the lethal action of their own products (producer self-protection), are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号