首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1760篇
  免费   19篇
  国内免费   40篇
  2024年   1篇
  2023年   9篇
  2022年   8篇
  2021年   10篇
  2020年   10篇
  2019年   16篇
  2018年   19篇
  2017年   12篇
  2016年   21篇
  2015年   41篇
  2014年   84篇
  2013年   144篇
  2012年   53篇
  2011年   96篇
  2010年   71篇
  2009年   91篇
  2008年   101篇
  2007年   121篇
  2006年   102篇
  2005年   99篇
  2004年   84篇
  2003年   83篇
  2002年   79篇
  2001年   39篇
  2000年   30篇
  1999年   42篇
  1998年   37篇
  1997年   33篇
  1996年   35篇
  1995年   46篇
  1994年   26篇
  1993年   14篇
  1992年   12篇
  1991年   17篇
  1990年   13篇
  1989年   16篇
  1988年   14篇
  1987年   5篇
  1986年   10篇
  1985年   4篇
  1984年   16篇
  1983年   17篇
  1982年   13篇
  1981年   11篇
  1980年   6篇
  1979年   6篇
  1978年   1篇
  1976年   1篇
排序方式: 共有1819条查询结果,搜索用时 156 毫秒
1.
2.
Previously sedentary men (n = 23) and women (n = 18) were trained to run a half marathon contest after 40 weeks. Total blood glutathione had increased by 20 weeks of training and had returned to normal after 40 weeks. Erythrocyte glutathione reductase activity had increased by 20 weeks and remained elevated after 40 weeks. This effect was accompanied by decreases in glutathione reductase coefficients, which indicated that increases in the presence of riboflavin may have been responsible for the changes in reductase activity. Erythrocyte glutathione S-transferase activity had increased slightly after 20 weeks of training and a much more marked increase was found after 40 weeks. This may have been indicative of the occurrence of lipid peroxidation in this phase of training. The participants ran a 15-km race after the first 20 weeks of training and a half marathon after 40 weeks. Blood glutathione tended to decrease after the 15-km race and increased after the half marathon. In both cases it had returned to normal values 5 days after the race. Erythrocyte glutathione reductase was elevated 1 day after the races, and had returned to normal after 5 days. This could also have been explained from concurrent changes in the riboflavin content of the erythrocytes. Erythrocyte glutathione S-transferase activity decreased after both races, but was restored 5 days after the half marathon while such was not the case after the 15-km race.  相似文献   
3.
The red-cell enzymes, glutathione reductase (FAD-dependent) and pyridoxine (pyridoxamine) phosphate oxidase (FMN-dependent), were studied in control subjects. The wide range the glutathione reductase activity correlated inversely with the percentage stimulation by FAD added in vitro, and with pyridoxine (pyridoxamine) phosphate oxidase activity. Both enzymes were stimulated after ingestion of riboflavin. The results support the suggestion that the rate of metabolism of riboflavin in the red cell controls the activity of both enzymes, and the rate of red-cell metabolism of vitamin B-6.  相似文献   
4.
Malaria parasites contain a complete glutathione (GSH) redox system, and several enzymes of this system are considered potential targets for antimalarial drugs. Through generation of a γ-glutamylcysteine synthetase (γ-GCS)-null mutant of the rodent parasite Plasmodium berghei, we previously showed that de novo GSH synthesis is not critical for blood stage multiplication but is essential for oocyst development. In this study, phenotype analyses of mutant parasites lacking expression of glutathione reductase (GR) confirmed that GSH metabolism is critical for the mosquito oocyst stage. Similar to what was found for γ-GCS, GR is not essential for blood stage growth. GR-null parasites showed the same sensitivity to methylene blue and eosin B as wild type parasites, demonstrating that these compounds target molecules other than GR in Plasmodium. Attempts to generate parasites lacking both GR and γ-GCS by simultaneous disruption of gr and γ-gcs were unsuccessful. This demonstrates that the maintenance of total GSH levels required for blood stage survival is dependent on either de novo GSH synthesis or glutathione disulfide (GSSG) reduction by Plasmodium GR. Our studies provide new insights into the role of the GSH system in malaria parasites with implications for the development of drugs targeting GSH metabolism.  相似文献   
5.
The aim of this study is to evaluate the effect of sheep follicular fluid (SFF) supplementation of the in vitro maturation (IVM) media of sheep oocytes on the resumption of meiosis, glutathione (GSH) level, and expression of apoptosis (Bax, Bcl-2) as well as heat shock protein beta-1 (HSPB1) genes. Sheep ovaries were collected from the central slaughterhouse of Riyadh city, KSA. Oocytes were aspirated from 3 to 8 mm follicles. Sheep oocytes were cultured in maturation medium with different concentrations of sheep follicular fluid: 0% (control), 10%, 20% and 40% for 24 h. The results indicated that the maturation rate of oocytes was significantly (p ≤ .05) decreased in 40% SFF (36.87%) versus the control (61.3%), 10% SFF (63.95%) and 20% SFF (64.08%). The supplementation of the IVM medium with 10% SFF induced an intra-oocyte GSH concentration that was significantly higher than in sheep oocytes cultured with 20% and 40% SFF and similar to the GSH content in oocytes cultured without SFF. Real-time polymerase chain reaction analysis of gene expression revealed no significant differences in the Bax and HSPB1 genes between the control and 10% SFF, whereas they were significantly higher in 40% FF (p ≤ .05) compared to the control. The expression of Bax:Bcl-2 was significantly higher in 20% and 40% SFF compared to the control group. In conclusion, the addition of SFF to the IVM culture of sheep oocytes is recommended to support nuclear maturation and increase oocyte competence.  相似文献   
6.
Sodium selenite was found to protect Escherichia coli cells against killing and mutagenic effects of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Such protective effects were not observed when cells were treated with N-methyl-N-nitrosourea (MNU). The protection by sodium selenite was not controlled by the ada gene, which is responsible for the repair of alkylated damage in DNA. A reduction of the amount of glutathione was found when cells were treated with sodium selenite, and glutathione is known to be involved in the methylation of DNA by MNNG, not by MNU. Reduced methylation by MNNG due to the reduction of the amount of glutathione caused by abundant sodium selenite was suggested to be the mechanism of protection.  相似文献   
7.
The effects of two glycosylated whey hydrolysates (GWH-Gal A and GWH-Gal B) on glutathione (GSH) and related antioxidant enzymes in SGC-7901 cells were evaluated. Two whey glycosylated hydrolysates promoted an increase in reduced glutathione (GSH) in normal SGC-7901 cells. GSH, glutathione peroxidase (GPx), γ-glutamine cysteine synthetaase (γ-GCS), and catalase (CAT) at 1.0 and 2.0 mg/mL in normal SGC-7901 cells were higher in the GWH-Gal A group than in the GWH-Gal B group (P < 0.05). Compared with GWH-Gal B, GWH-Gal A more strongly inhibited decreases in intracellular GSH, GPx, γ-GCS, CAT, and superoxide dismutase (SOD) in H2O2-induced SGC-7901 cells. Compared with GWH-Gal B, GWH-Gal A at 1.0 and 2.0 mg/mL effectively inhibited increases in lactate dehydrogenase (LDH) and malondialdehyde (MDA) in H2O2-induced SGC-7901 cells (P < 0.05). Therefore, GSH content and related antioxidant enzyme activity levels (GPx, γ-GCS, CAT, SOD) in both normal and H2O2-induced SGC-7901 cells were considerably stronger in the GWH-Gal A group than in the GWH-Gal B group.  相似文献   
8.
9.
The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25–25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.  相似文献   
10.
Foxtail millet (Pennisetum glaucum L.) is a vital crop that is planted as food and fodder crop around the globe. There is only limited information is present for abiotic stresses on the physiological responses to atrazine. A field experiment was conducted to investigate the effects of different atrazine dosages on the growth, fluorescence and physiological parameters i.e., malonaldehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O2) in the leaves to know the extent of atrazine on oxidative damage of foxtail millet. Our experiment consisted of 0, 2.5, 12.5, 22.5 and 32.5 (mg/kg) of labeled atrazine doses on 2 foxtaill millet varieties. High doses of atrazine significantly enhanced ROS and MDA synthesis in the plant leaves. Enzymes activities like ascorbate peroxidase (APX) and peroxidase (POD) activities enhanced, while catalase (CAD) and superoxide dismutase (SOD) activities reduced with increasing atrazine concentrations. Finally atrazine doses at 32.5 mg/kg reduced chlorophyll contents, while chlorophyll (a/b) ratio also enhanced. Biomass, plant height, chlorophyll fluorescence parameters, minimal and maximal fluorescence (Fo, Fm), maximum and actual quantum yield, photochemical quenching coefficient, and electron transport rate are decreased with increasing atrazine doses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号