首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2015年   1篇
  2012年   1篇
  1991年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
In New Zealand, agriculture is predominantly based on pastoral grazing systems and animal excreta deposited on soil during grazing have been identified as a major source of nitrous oxide (N2O) emissions. Forage brassicas (Brassica spp.) have been increasingly used to improve lamb performance. Compared with conventional forage perennial ryegrass (Lolium perenne L.), a common forage in New Zealand, forage brassicas have faster growth rates, higher dry matter production and higher nutritive value. The aim of this study was to determine the partitioning of dietary nitrogen (N) between urine and dung in the excreta from sheep fed forage brassica rape (B. napus subsp. oleifera L.) or ryegrass, and then to measure N2O emissions when the excreta from the two different feed sources were applied to a pasture soil. A sheep metabolism study was conducted to determine urine and dung-N outputs from sheep fed forage rape or ryegrass, and N partitioning between urine and dung. Urine and dung were collected and then used in a field plot experiment for measuring N2O emissions. The experimental site contained a perennial ryegrass/white clover pasture on a poorly drained silt-loam soil. The treatments included urine from sheep fed forage rape or ryegrass, dung from sheep fed forage rape or ryegrass, and a control without dung or urine applied. N2O emission measurements were carried out using a static chamber technique. For each excreta type, the total N2O emissions and emission factor (EF3; N2O–N emitted during the 3- or 8-month measurement period as a per cent of animal urine or dung-N applied, respectively) were calculated. Our results indicate that, in terms of per unit of N intake, a similar amount of N was excreted in urine from sheep fed either forage rape or ryegrass, but less dung N was excreted from sheep fed forage rape than ryegrass. The EF3 for urine from sheep fed forage rape was lower compared with urine from sheep fed ryegrass. This may have been because of plant secondary metabolites, such as glucosinolates in forage rape and their degradation products, are transferred to urine and affect soil N transformation processes. However, the difference in the EF3 for dung from sheep fed ryegrass and forage rape was not significant.  相似文献   
2.
鲢、鳙在东湖生态系统的氮、磷循环中的作用   总被引:28,自引:1,他引:27  
我们研究了鲢、鳙在停食状况下氮、磷的排泄量及在有鱼及无鱼的水环境中鱼类及微囊藻的氮、磷释放率。结合有关参数进行换算,从量的方面评价了鲢、鳙在东湖生态系统物质循环中所起作用:①鲢、鳙摄食过程加速了水体氮、磷释放进程(有鱼水体氮、磷释放率分别为无鱼水体的1.88和1.41倍),但其释放量(粪便的氮、磷释放量分别为水体氮、磷总含量的11.45%和3.4%)不足以左右东湖水体初级生产量的变动;②鲢、鳙摄食过程一方面提高了对初级生产量的利用率,而另一方面却通过鱼体积贮从水体中移出大量氮(52.20吨)、磷(11.36吨),分别占水体浮游物总氮、磷的3.01%和5.28%;③鲢、鳙大量摄食浮游动物,降低了被摄食种群的密度,缩短被摄食种群生物量周转期(1982年被摄食种群的生产量为1981年的1.05倍,鲢、鳙放养量为1981年的7倍;这两年鱼摄食量分别占其被摄食种群产量的31.73%及0.63%,被摄食种群的ρ/B系数分别为67.92及48.01);这样水体中浮游动物产量的相对稳定,也就促使浮游植物产量相对平衡。  相似文献   
3.
Poor sanitation in urban slums results in increased prevalence of diseases and pollution of the environment. Excreta, grey water and solid wastes are the major contributors to the pollution load into the slum environment and pose a risk to public health. The high rates of urbanization and population growth, poor accessibility and lack of legal status in urban slums make it difficult to improve their level of sanitation. New approaches may help to achieve the sanitation target of the Millennium Development Goal (MDG) 7; ensuring environmental sustainability. This paper reviews the characteristics of waste streams and the potential treatment processes and technologies that can be adopted and applied in urban slums in a sustainable way. Resource recovery oriented technologies minimise health risks and negative environmental impacts. In particular, there has been increasing recognition of the potential of anaerobic co-digestion for treatment of excreta and organic solid waste for energy recovery as an alternative to composting. Soil and sand filters have also been found suitable for removal of organic matter, pathogens, nutrients and micro-pollutants from grey water.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号