首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2021年   1篇
  2014年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
  1981年   1篇
  1977年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
《Journal of Physiology》2014,108(1):18-27
Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level.  相似文献   
2.
Spectraplakins are large multifunctional cytoskeletal interacting molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. It has been speculated that the various functional domains and regions found in Spectraplakins are used in context-specific manners, a model which would provide a crucial explanation for the multifunctional nature of Spectraplakins. Here we tested this possibility by studying domain requirements of the Drosophila Spectraplakin Short stop (Shot) in three different cellular contexts in vivo: (1) neuronal growth, which requires dynamic actin-microtubule interaction; (2) formation and maintenance of tendon cells, which depends on highly stabilised arrays of actin filaments and microtubules, and (3) compartmentalisation in neurons, which is likely to involve cortical F-actin networks. Using these cellular contexts for rescue experiments with Shot deletion constructs in shot mutant background, a number of differential domain requirements were uncovered. First, binding of Shot to F-actin through the first Calponin domain is essential in neuronal contexts but dispensable in tendon cells. This finding is supported by our analyses of shotkakP2 mutant embryos, which produce only endogenous isoforms lacking the first Calponin domain. Thus, our data demonstrate a functional relevance for these isoforms in vivo. Second, we provide the first functional role for the Plakin domain of Shot, which has a strong requirement for compartmentalisation in neurons and axonal growth, demonstrating that Plakin domains of long Spectraplakin isoforms are of functional relevance. Like the Calponin domain, also the Plakin domain is dispensable in tendon cells, and the currently assumed role of Shot as a linker of microtubules to the tendon cell surface may have to be reconsidered. Third, we demonstrate a function of Shot as an actin-microtubule linker in dendritic growth, thus shedding new light into principal growth mechanisms of this neurite type. Taken together, our data clearly support the view that Spectraplakins function in tissue-specific modes in vivo, and even domains believed to be crucial for Spectraplakin function can be dispensable in specific contexts.  相似文献   
3.
Summary The morphology of postnatal differentiation of the Golgi apparatus, the nucleus, the perikaryon, and the dendrites was studied in Purkinje cells of the rat cerebellum for 30 days after birth using histochemical, histological, and electron microscopic methods.The Golgi apparatus during differentiation undergoes morphological and positional changes. From the 1st to 7th postnatal day, the Golgi apparatus is found in a supranuclear position, and is connected with the axes of differentiating primary dendrites by beam-like processes. From days 8 to 11 this connection disappears, and most of the Golgi apparatus assumes a lateronuclear and infranuclear position. After the 11th or 12th day, the Golgi apparatus is found in perinuclear and peripheral cytoplasmic positions. The formation of granular endoplasmic reticulum occurs in the vicinity of the perinuclear Golgi apparatus. The differentiation of cell and nuclear forms requires approximately 20 days. The morphological changes of differentiation are discussed in relation to the participation of the Golgi apparatus in the differentiation of dendrites and in the formation of the granular endoplasmic reticulum.  相似文献   
4.
Aging is associated with a variety of pathologies, including motor dysfunctions and reductions in sexual behavior. In male rats, declines in sexual behavior during the aging process may be caused in part by the loss of the lumbar spinal cord motoneurons that innervate the penile musculature. Alternatively, declining sexual behavior may be caused by the precipitous reductions in circulating testosterone that occur during aging. In this paper, we report two experiments examining these issues. In Experiment 1, we counted motoneurons in the lumbar motor nuclei and measured several androgen-sensitive morphological properties of the penile muscles and their innervating motoneurons at several time points during the aging process. Motoneuron number in the lumbar nuclei did not change over time, even with very advanced age. In contrast, the penile muscles and their innervating motoneurons underwent profound atrophy, with muscle weight and motoneuron dendritic length declining to less than 50% of young adult levels. In Experiment 2, we treated aged animals with exogenous testosterone, and then examined their penile neuromuscular systems for morphological changes. Testosterone treatment, both acute and chronic, completely reversed age-related declines in the weight of the penile muscles and in the soma size and dendritic length of their innervating motoneurons. Together, these data suggest that reductions in male sexual behavior during the aging process are caused primarily by declines in testosterone levels rather than motoneuron loss. Furthermore, they raise the possibility that testosterone treatment could play an important role in maintaining neuronal connectivity in the aging body.  相似文献   
5.
Insect neurons are individually identifiable and have been used successfully to study principles of the formation and function of neuronal circuits. In the fruitfly Drosophila, studies on identifiable neurons can be combined with efficient genetic approaches. However, to capitalise on this potential for studies of circuit formation in the CNS of Drosophila embryos or larvae, we need to identify pre- and postsynaptic elements of such circuits and describe the neuropilar territories they occupy. Here, we present a strategy for neurite mapping, using a set of evenly distributed landmarks labelled by commercially available anti-Fasciclin2 antibodies which remain comparatively constant between specimens and over developmental time. By applying this procedure to neurites labelled by three Gal4 lines, we show that neuritic territories are established in the embryo and maintained throughout larval life, although the complexity of neuritic arborisations increases during this period. Using additional immunostainings or dye fills, we can assign Gal4-targeted neurites to individual neurons and characterise them further as a reference for future experiments on circuit formation. Using the Fasciclin2-based mapping procedure as a standard (e.g., in a common database) would facilitate studies on the functional architecture of the neuropile and the identification of candiate circuit elements.  相似文献   
6.
Purkinje cells are the principal neurons of the cerebellar cortex and are characterized by a large and highly branched dendritic tree. For this reason, they have for a long time been an attractive model system to study the regulation of dendritic growth and differentiation. In this article, I will first review studies on different aspects of Purkinje cell dendritic development and then go on to present studies which have aimed at experimentally altering Purkinje cell dendritic development. Some of the cellular and molecular mechanisms which have been shown by these studies to be important determinants of Purkinje cell dendritic development will be discussed, in particular the role of the parallel fiber input, of hormones, and of neuronal growth factors. The organotypic slice culture method will be introduced as an important experimental tool to study Purkinje cell dendritic development under controlled conditions. Using cerebellar slice cultures, protein kinase C (PKC) has been identified as a major determinant of Purkinje cell dendritic development and the contribution of specific isoforms of PKC will be discussed. Finally, it will be shown that Purkinje cell dendritic development in slice cultures does not depend on the activation of glutamate receptors and appears to be independent of the presence of the neurotrophin BDNF. These studies indicate that the initial outgrowth of the Purkinje cell dendritic tree can occur in the absence of signals derived from afferent fibers, but is under control of PKC signaling.  相似文献   
7.
Cortical information processing relies critically on the processing of electrical signals in pyramidal neurons. Electrical transients mainly arise when excitatory synaptic inputs impinge upon distal dendritic regions. To study the dendritic aspect of synaptic integration one must record electrical signals in distal dendrites. Since thin dendritic branches, such as oblique and basal dendrites, do not support routine glass electrode measurements, we turned our effort towards voltage-sensitive dye recordings. Using the optical imaging approach we found and reported previously that basal dendrites of neocortical pyramidal neurons show an elaborate repertoire of electrical signals, including backpropagating action potentials and glutamate-evoked plateau potentials. Here we report a novel form of electrical signal, qualitatively and quantitatively different from backpropagating action potentials and dendritic plateau potentials. Strong glutamatergic stimulation of an individual basal dendrite is capable of triggering a fast spike, which precedes the dendritic plateau potential. The amplitude of the fast initial spikelet was actually smaller that the amplitude of the backpropagating action potential in the same dendritic segment. Therefore, the fast initial spike was dubbed “spikelet”. Both the basal spikelet and plateau potential propagate decrementally towards the cell body, where they are reflected in the somatic whole-cell recordings. The low incidence of basal spikelets in the somatic intracellular recordings and the impact of basal spikelets on soma-axon action potential initiation are discussed.  相似文献   
8.
Abstract: Microtubule-associated protein-2 (MAP-2) functions to maintain neuronal morphology by promoting the assembly of microtubules. MAP-2c is an alternately spliced form of MAP-2, containing the first 151 amino acids of high-molecular-weight (HMW) MAP-2 joined to the last 321 amino acids, eliminating 1,352 amino acids specific to HMW MAP-2. A polyclonal antibody generated to the splice site of human MAP-2c was used to determine its cellular localization. The MAP-2c antiserum was depleted of any HMW MAP-2 reactivity by absorption with HMW MAP-2 fusion protein. Western blot analysis of human fetal spinal cord homogenates demonstrated that the antibody is specific for human MAP-2c. MAP-2c immunoreactivity was found in the perinuclear cytoplasm and processes of anterior motor neurons and large processes of the posterior column in sections from 22–24-week human fetal spinal cord. Double-label confocal microscopy was performed using the MAP-2c polyclonal antibody and either a HMW MAP-2 or a neurofilament protein (highly phosphorylated 160- and 200-kDa protein) monoclonal antibody to identify these processes as dendrites or axons, respectively. HMW MAP-2 and MAP-2c colocalized in cell bodies and dendrites of anterior motor neurons, demonstrating for the first time the presence of native MAP-2c within dendrites. In addition, immunoelectron microscopy showed MAP-2c associated with microtubules in dendrites of motor neurons. MAP-2c and the neurofilament proteins were found in axons of the dorsal and ventral roots. The presence of MAP-2c within axons and dendrites suggests that MAP-2c contributes to neuronal plasticity during human fetal development.  相似文献   
9.
Summary This study presents evidence for a retinal projection to neurons in the lateral hypothalamic area (LHA) of the albino rat. In Golgi-Kopsch material dendrites from LHA-neurons are observed to extend through the supraoptic commissures into the optic tract. The presence of dendrites in the optic tract is confirmed by electron microscopy. Numerous axon terminals are observed forming asymmetric synaptic contacts with these dendritic profiles. Following bilateral enucleation, many of the preterminal axons and terminals in synaptic contact with dendrites in the optic tract demonstrate dark degeneration. After intraocular injection of horseradish peroxidase, there is marked labeling of preterminal axons and terminals in the optic tract. These observations indicate that LHA neurons receive a direct retinal projection from terminals making synaptic contact with dendrites of LHA-neurons extending into the optic tract.  相似文献   
10.
Summary In earlier ultrastructural studies of the supraoptic nucleus in adult rats we noted free and incompletely covered postsynaptic densities (collectively referred to here as vacant postsynaptic densities) on dendritic shafts. Free postsynaptic densities have been reported in other parts of the central nervous system of normal rodents. We investigated the possibility that physiological activation of the supraoptic cells, which produces changes in many aspects of their morphology, would alter the incidence of the free or incompletely covered postsynaptic densities on dendrites in the supraoptic basal dendritic zone. The cells of the supraoptic nucleus are activated to increase cell firing and secretion of oxytocin and/or vasopressin in response to dehydration, gestation, and lactation. We have examined: (i) untreated virgin females; (ii) untreated males; (iii) 24 h water-deprived males; (iv) prepartum (21st day of gestation) females; (v) postpartum females (on the day of parturition); (vi) lactating females (14 days of suckling); (vii) mothers 10 days after weaning their pups; (viii) females given 2% saline to drink (dehydrated) for 10 days; and females or males given 2% saline to drink for 10 days, then given tap water for (ix) 2 or (x) 5 weeks to allow rehydration. Only long-term activation of the supraoptic nucleus by lactation or by drinking saline for 10 days brought about significant decreases in the percentage of dendrites with vacant postsynaptic densities. These densities did not reappear in saline treated rats which had been rehydrated for 2 weeks, but did return in both the 5-week rehydration and the 10-day postweaning groups. Short-term activation of the supraoptic nucleus, such as occurs at parturition or in acute dehydration, did not affect the vacant postsynaptic densities. Analysis of semiserial thin sections indicated that presynaptic elements facing the incompletely covered postsynaptic densities contain predominantly clear round vesicles and also that apparently free postsynaptic densities were usually at least partially contacted by a presynaptic ending in adjacent sections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号