首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2014年   7篇
  2011年   4篇
  2010年   6篇
  2009年   8篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2002年   1篇
  1995年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent infectivity, there is little structural information on this entry mechanism. Here, as a first step towards our long-term goal of understanding the interaction between E1 and E2 TM-domains, we have expressed, purified and characterized E1-TM using structural biomolecular NMR methods. An MBP-fusion expression system yielded sufficient quantities of pure E1-TM, which was solubilized in two membrane-mimicking environments, SDS- and LPPG-micelles, affording samples amenable to NMR studies. Triple resonance assignment experiments and relaxation measurements provided information on the secondary structure and global fold of E1-TM in these environments. In SDS micelles E1-TM adopts a helical conformation, with helical stretches at residues 354–363 and 371–379 separated by a more flexible segment of residues 364–370. In LPPG micelles a helical conformation was observed for residues 354–377 with greater flexibility in the 366–367 dyad, suggesting LPPG provides a more native environment for the peptide. Replacement of key positively charged residue K370 with an alanine did not affect the secondary structure of E1-TM but did change the relative positioning within the micelle of the two helices. These results lay the foundation for structure determination of E1-TM and a molecular understanding of how E1-TM flexibility enhances its interaction with E2-TM during heterodimerization and membrane fusion.  相似文献   
2.
GCAPs are neuronal Ca2 +-sensors playing a central role in light adaptation. GCAPs are N-terminally myristoylated membrane-associated proteins. Although, the myristoylation of GCAPs plays an important role in light adaptation its structural and physiological roles are not yet clearly understood. The crystal-structure of GCAP-1 shows the myristoyl moiety inside the hydrophobic core of the protein, stabilizing the protein structure; but 2H-solid-state NMR investigations on the deuterated myristoyl moiety of GCAP-2 in the presence of liposomes showed that it is inserted into the lipid bilayer. In this study, we address the question of the localization of the myristoyl group of Ca2 +-bound GCAP-2, and the influence of CHAPS-, DPC-micelles and DMPC/DHPC-bicelles on the structure, and on the localization of the myristoyl group, of GCAP-2 by solution-state NMR. We also carried out the backbone assignment. Characteristic chemical shift differences have been observed between the myristoylated and the non-myristoylated forms of the protein. Our results support the view that in the absence of membrane forming substances the myristoyl moiety is buried inside a hydrophobic pocket of GCAP-2 similar to the crystal structure of GCAP-1. Addition of CHAPS-micelles and DMPC/DHPC-bicelles cause specific structural changes localized in and around the myristoyl binding pocket. We interpret these changes as an indication for the extrusion of the myristoyl moiety from its binding pocket and its insertion into the hydrophobic interior of the membrane mimic. On the basis of the backbone chemical shifts, we propose a structural model of myristoylated GCAP-2 in the presence of Ca2 + and membrane mimetics.  相似文献   
3.
The properties of Ca2+-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C12E8) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca2+-ATPase with a greater specific activity than solubilization with C12E8 or Triton X-100. DHPC was determined to be superior to C12E8; while that the C12E8 was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca2+-ATPase retained the E1Ca−E1*Ca conformational transition as that observed for native microsomes; whereas the C12E8 and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca2+ transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C12E8 and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca2+-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C12E8 and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca2+ uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca2+-ATPase retained more organized and native secondary conformation compared to C12E8 and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C12E8 and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca2+-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C12E8 and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein–lipid interactions in the function of the membrane-bound enzyme.  相似文献   
4.
The morphology of q = 0.5 fast-tumbling bicelles prepared with three different acyl chain lengths has been investigated by NMR. It is shown that bicelles prepared with DLPC (12 C) and DHPC are on average larger than those containing DMPC or DPPC (14 and 16 C) and DHPC, which may be due to a higher degree of mixing between DLPC and DHPC. The fast internal mobility of the lipids was determined from natural abundance carbon-13 relaxation. A similar dynamical behaviour of the phospholipids in the three different bicelles was observed, although the DPPC lipid acyl chain displayed a somewhat lower degree of mobility, as evidenced by higher generalized order parameters throughout the acyl chain. Carbon-13 relaxation was also used to determine the effect of different model transmembrane peptides, with flanking Lys residues, on the lipid dynamics in the three different bicelles. All peptides had the effect of increasing the order parameters for the DLPC lipid, while no effect was observed on the longer lipid chains. This effect may be explained by a mismatch between the hydrophobic length of the peptides and the DLPC lipid acyl chain.  相似文献   
5.
Lecithin:retinol acyltransferase (LRAT) plays a major role in the vertebrate visual cycle. Indeed, it is responsible for the esterification of all-trans retinol into all-trans retinyl esters, which can then be stored in microsomes or further metabolized to produce the chromophore of rhodopsin. In the present study, a detailed characterization of the enzymatic properties of truncated LRAT (tLRAT) has been achieved using in vitro assay conditions. A much larger tLRAT activity has been obtained compared to previous reports and to an enzyme with a similar activity. In addition, tLRAT is able to hydrolyze phospholipids bearing different chain lengths with a preference for micellar aggregated substrates. It therefore presents an interfacial activation property, which is typical of classical phospholipases. Furthermore, given that stability is a very important quality of an enzyme, the influence of different parameters on the activity and stability of tLRAT has thus been studied in detail. For example, storage buffer has a strong effect on tLRAT activity and high enzyme stability has been observed at room temperature. The thermostability of tLRAT has also been investigated using circular dichroism and infrared spectroscopy. A decrease in the activity of tLRAT was observed beyond 70 °C, accompanied by a modification of its secondary structure, i.e. a decrease of its α-helical content and the appearance of unordered structures and aggregated β-sheets. Nevertheless, residual activity could still be observed after heating tLRAT up to 100 °C. The results of this study highly improved our understanding of this enzyme.  相似文献   
6.
Large assemblies of respiratory chain complexes, known as supercomplexes, are present in the mitochondrial membrane in mammals and yeast, as well as in some bacterial membranes. The formation of supercomplexes is thought to contribute to efficient electron transfer, stabilization of each enzyme complex, and inhibition of reactive oxygen species (ROS) generation. In this study, mitochondria from various organisms were solubilized with digitonin, and then the solubilized complexes were separated by blue native PAGE (BN-PAGE). The results revealed a supercomplex consisting of complexes I, III, and IV in mitochondria from bovine and porcine heart, and a supercomplex consisting primarily of complexes I and III in mitochondria from mouse heart and liver. However, supercomplexes were barely detectable in Drosophila flight-muscle mitochondria, and only dimeric complex V was present. Drosophila mitochondria exhibited the highest rates of oxygen consumption and NADH oxidation, and the concentrations of the electron carriers, cytochrome c and quinone were higher than in other species. Respiratory chain complexes were tightly packed in the mitochondrial membrane containing abundant phosphatidylethanolamine with the fatty acid palmitoleic acid (C16:1), which is relatively high oxidation-resistant as compared to poly-unsaturated fatty acid. These properties presumably allow efficient electron transfer in Drosophila. These findings reveal the existence of a new mechanism of biological adaptation independent of supercomplex formation.  相似文献   
7.
The three-dimensional backbone structure of the transmembrane domain of Vpu from HIV-1 was determined by solid-state NMR spectroscopy in two magnetically-aligned phospholipid bilayer environments (bicelles) that differed in their hydrophobic thickness. Isotopically labeled samples of Vpu(2-30+), a 36-residue polypeptide containing residues 2-30 from the N-terminus of Vpu, were incorporated into large (q = 3.2 or 3.0) phospholipid bicelles composed of long-chain ether-linked lipids (14-O-PC or 16-O-PC) and short-chain lipids (6-O-PC). The protein-containing bicelles are aligned in the static magnetic field of the NMR spectrometer. Wheel-like patterns of resonances characteristic of tilted transmembrane helices were observed in two-dimensional (1)H/(15)N PISEMA spectra of uniformly (15)N-labeled Vpu(2-30+) obtained on bicelle samples with their bilayer normals aligned perpendicular or parallel to the direction of the magnetic field. The NMR experiments were performed at a (1)H resonance frequency of 900 MHz, and this resulted in improved data compared to lower-resonance frequencies. Analysis of the polarity-index slant-angle wheels and dipolar waves demonstrates the presence of a transmembrane alpha-helix spanning residues 8-25 in both 14-O-PC and 16-O-PC bicelles, which is consistent with results obtained previously in micelles by solution NMR and mechanically aligned lipid bilayers by solid-state NMR. The three-dimensional backbone structures were obtained by structural fitting to the orientation-dependent (15)N chemical shift and (1)H-(15)N dipolar coupling frequencies. Tilt angles of 30 degrees and 21 degrees are observed in 14-O-PC and 16-O-PC bicelles, respectively, which are consistent with the values previously determined for the same polypeptide in mechanically-aligned DMPC and DOPC bilayers. The difference in tilt angle in C14 and C16 bilayer environments is also consistent with previous results indicating that the transmembrane helix of Vpu responds to hydrophobic mismatch by changing its tilt angle. The kink found in the middle of the helix in the longer-chain C18 bilayers aligned on glass plates was not found in either of these shorter-chain (C14 or C16) bilayers.  相似文献   
8.
Heczková B  Slotte JP 《FEBS letters》2006,580(10):2471-2476
1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (OMPC, edelfosine) and 1-hexadecylphosphocholine (HePC, miltefosine) represent two groups of synthetic ether lipid analogues with anti-tumor activity. Because of their hydrophobic nature, they may become incorporated into plasma membranes of cells, and it has been argued that they may act via association with lipid rafts. With the quenching of steady-state fluorescence of probes preferentially partitioning into sterol-rich ordered domains (cholestatrienol and trans-parinaric acid), we showed that OMPC and HePC by themselves did not form sterol-rich domains in fluid model membranes, in contrast to the two chain ether lipid 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine. Nevertheless, all three ether lipids significantly stabilized palmitoyl-sphingomyelin/cholesterol-rich domains against temperature induced melting. In conclusion, this study shows that anti-tumor ether lipids are likely to affect the properties of cholesterol-sphingomyelin domains (i.e., lipid rafts) when incorporated into cell membranes.  相似文献   
9.
X-band and Q-band electron paramagnetic resonance (EPR) spectroscopic techniques were used to investigate the structure and dynamics of cholesterol containing phospholipid bicelles based upon molecular order parameters (Smol), orientational dependent hyperfine splittings and line shape analysis of the corresponding EPR spectra. The nitroxide spin-label 3-β-doxyl-5-α-cholestane (cholestane) was incorporated into DMPC/DHPC bicelles to report the alignment of bicelles in the static magnetic field. The influence of cholesterol on aligned phospholipid bicelles in terms of ordering, the ease of alignment, phase transition temperature have been studied comparatively at X-band and Q-band. At a magnetic field of 1.25 T (Q-band), bicelles with 20 mol% cholesterol aligned at a much lower temperature (313 K), when compared to 318 K at a 0.35 T field strength for X-band, showed better hyperfine splitting values (18.29 G at X-band vs. 18.55 G at Q-band for perpendicular alignment and 8.25 G at X-band vs. 7.83 G at Q-band for the parallel alignment at 318 K) and have greater molecular order parameters (0.76 at X-band vs. 0.86 at Q-band at 318 K). Increasing cholesterol content increased the bicelle ordering, the bicelle-alignment temperature and the gel to liquid crystalline phase transition temperature. We observed that Q-band is more effective than X-band for studying aligned bicelles, because it yielded a higher ordered bicelle system for EPR spectroscopic studies.  相似文献   
10.
Phospholipases A2 have been shown to be activated in a concentration dependent manner by a number of antimicrobial peptides, including melittin, magainin 2, indolicidin, and temporins B and L. Here we used fluorescently labelled bee venom PLA2 (PLA2D) and the saturated phospholipid substrate 1,2-dipalmitoyl-glycero-sn-3-phosphocholine (L-DPPC), exhibiting a lag-burst behaviour upon the initiation of the hydrolytic reaction by PLA2. Increasing concentrations of Cys-temporin B and its fluorescent Texas red derivative (TRC-temB) caused progressive shortening of the lag period. TRC-temB/PLA2D interaction was observed by Förster resonance energy transfer (FRET), with maximum efficiency coinciding with the burst in hydrolysis. Subsequently, supramolecular structures became visible by microscopy, revealing amyloid-like fibrils composed of both the activating peptide and PLA2. Reaction products, palmitic acid and 1-palmitoyl-2-lyso-glycero-sn-3-phosphocholine (lysoPC, both at > 8 mol%) were required for FRET when using the non-hydrolysable substrate enantiomer 2,3-dipalmitoyl-glycero-sn-1-phosphocholine (D-DPPC). A novel mechanism of PLA2 activation by co-fibril formation and associated conformational changes is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号