首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   2篇
  2021年   1篇
  2014年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 62 毫秒
1
1.
芦竹修复镉汞污染湿地的研究   总被引:16,自引:0,他引:16  
以湿土盆栽方法研究了芦竹在Cd和Hg污染模拟湿地中的富集能力及其在植株中的分布.结果表明,芦竹在101mg·kg-1Hg污染环境中生长8个月后,对Hg的富集量是根系>茎>叶片,植物地上部分对Hg富集量为200±20mg·kg-1DW;而在115mg·kg-1Cd污染环境中生长8个月后,其对Cd的富集量是叶片>根系>茎,芦竹叶片对Cd的富集量在160±26mg·kg-1DW.重金属在芦竹各器官内的含量随种植时间的延长而增加,8个月生长期富集量比4个月生长期富集量高30%~50%.芦竹生物富集系数(Bio concentrationfactorBCF)随土壤中重金属含量增加而减小.在污染土壤中,芦竹叶、茎对Hg的BCF为1.9和2.1、对Cd为1.5和0.3;在未受污染的空白对照湿土中(含Hg6.8mg·kg-1,Cd8.5mg·kg-1),芦竹叶、茎对Hg的BCF为6.8和12.2,对Cd为7.0和2.7,表明芦竹具有生物量大、根系发达、适应性强等特点,对Cd、Hg有较大富集量和较好的耐受性.  相似文献   
2.
The present study investigates the ability of two genus of duckweed (Lemna minor and Spirodela polyrhiza) to phytoremediate cadmium from aqueous solution. Duckweed was exposed to six different cadmium concentrations, such as, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mg/L and the experiment was continued for 22 days. Water samples were collected periodically for estimation of residual cadmium content in aqueous solution. At the end of treatment period plant samples were collected and accumulated cadmium content was measured. Cadmium toxicity was observed through relative growth factor and changes in chlorophyll content. Experimental results showed that Lemna minor and Spirodela polyrhiza were capable of removing 42–78% and 52–75% cadmium from media depending upon initial cadmium concentrations. Cadmium was removed following pseudo second order kinetic model. Maximum cadmium accumulation in Lemna minor was 4734.56 mg/kg at 2 mg/L initial cadmium concentration and 7711.00 mg/kg in Spirodela polyrhiza at 3 mg/L initial cadmium concentration at the end of treatment period. Conversely in both cases maximum bio-concentration factor obtained at lowest initial cadmium concentrations, i.e., 0.5 mg/L, were 3295.61 and 4752.00 for Lemna minor and Spirodela polyrhiza respectively. The present study revealed that both Lemna minor and Spirodela polyrhiza was potential cadmium accumulator.  相似文献   
3.
三种农药对斑马鱼的急性毒性和生物浓缩系数   总被引:17,自引:0,他引:17  
采用斑马鱼(Brachydanio rerio)为试验生物,研究了吡虫啉、三唑磷和哒螨灵的急性毒性和生物浓缩系数.通过毒性试验,获得了这3种农药对斑马鱼的24、48、72和96h LC50值.这3种农药的96h LC50值分别为281.37mg·L^-1、8.37mg·L^-1和11.66μg·L^-1.根据急性毒性数据和有关技术指南,确定生物浓缩试验浓度和持续暴露时间为14d.经0.5和5mg·L^-1吡虫啉暴露后的生物浓缩系数(BCFs)分别为1.52和0.97.经0.02和0.2mg·L^-1三唑磷暴露后的BCFs分别为9.00和8.45.经0.1和1μg·L^-1哒螨灵暴露后的BCFs分别为5600和4920.  相似文献   
4.
Environmental contamination caused by various pollutants due to automobile emissions is an alarming issue. One important type of the pollutants are heavy metals, including chromium (Cr) added by the exhaust of toxic smoke of vehicles. These pollutants are added to forage crops cultivated near roadsides, soil and irrigation water. However, rare studies have been conducted to infer Cr accumulation near heavy automobile emission areas. This study was conducted to determine Cr concentration in irrigation water, soil and forage. Water, forage and soil samples were collected from area impacted by heavy traffic. Atomic absorption spectrophotometer was used to appraise Cr values in the collected samples. Chromium values ranged from 0.50 to 1.14 mg/kg in water samples and from 0.04 to 2.23 mg/kg in soil samples. It was highest in Zea mays grown soil, whereas minimum in Brassica campestris soil. The Cr values in forages ranged from 0.09 to 1.06 mg/kg. Z. mays observed the highest Cr accumulation, whereas the lowest Cr accrual was noted for B. campestris. The pollution load index (PLI) was the highest for Trifolium alexandrinum, while the lowest for Z. mays. Bio-concentration factor (BCF) ranged from 0.14 to 8.63. The highest BCF was noted for T. alexandrinum, while the lowest for Z. mays. The highest and the lowest daily intake of metal (DIM) was noted for Z. mays at different sites. Health risk index (HRI) was highest for Z. mays and lowest for B. campestris. The results add valuable information on heavy metal accumulation in water, soil and forage samples near to automobile emission area.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号